Global news

France to close five nuclear reactors?

Without any official announcement having been made, French nuclear reactor operator EDF seems poised to close up to five reactors next year. What will this mean for the French energy market? Craig Morris investigates.

Nogent and four more plants will only be restarted “if economically justified” 

The french nuclear power plant at Nogent seen at sunset

(Photo by François Goglins, edited, CC BY-SA 4.0)

You would think, given French plans to transition from nuclear to renewables, that the sudden possibility of five reactors closing in a single year would draw some attention. The country has 58, so the closure of all five would equal 9% of the total. And although the original transition plan was adopted in 2015, not a single reactor has yet been closed – making five at once all the more striking.

Show more...

Over at EDF’s website, downtimes are published. For Flamanville 2, Golfech 1, Nogent 1, and Tricastin 2, there are announcements of “modulation weeks” scheduled for the beginning of 2019. So far, so normal – but then there is the following sentence:

The positioning of this modulation week is provisional: it will be reassessed and the plant will be restarted if economically justified.

This sentence is highly unusual and probably unprecedented. Apparently, EDF is considering keeping these four nuclear reactors closed because of economics.

That doesn’t mean they will close; it’s possible that the company is just jockeying for better terms. In 2017, wholesale futures prices for baseload in 2020 came in at around 35 euros per megawatt-hour; extending the service lives of France’s aging fleet from 40 to 50 years has been estimated to require a price of at least 55 euros.

By declaring these reactors economically unfeasible, EDF could pull some generation capacity off the market, thereby boosting wholesale prices for the remaining fleet. This step could then also be spun as part of the country’s energy transition to renewables. But nothing at all has been reported about this matter. In the only relevant coverage on the web, Platts merely states that the French nuclear power production fell “to a record low” in the fourth quarter of 2017, and that the four reactors mentioned above will be taken off-line it this summer for “additional fuel-saving outages.” No mention is made of possible permanent closures in 2019. I could find no reports at all in French.

The fifth EDF reactor in question is Paluel 2. During an upgrade, when the facility was off, a 465-ton generator fell off a crane within the facility in March 2016, causing an earthquake. Reuters reports that the reopening scheduled to take place in April has now been postponed to June 2018, but EDF’s message leaves even that prolonged date open: “The duration of unavailability revised and may change according to multiple assessments and ongoing works.”

By law, French reactors automatically close permanently if they have been down for two years. In the case of Paluel 2, the postponement would put it beyond that deadline. But the French government saw this mess coming; last April, the (former) Environmental Minister Royal extended the deadline by another two years in a decree (in French). The law currently allows an extension of up to three years. As the French press reported (in French) at the time, the reactor was originally to be put back into operation in March 2017 – the month before the decree – but the date had been postponed to August and then subsequently to November 2017. The restart of Paluel has thus been postponed four times.

That report calls the accident “spectacular and unprecedented” and adds that postponing the deadline for reopening a reactor in order to prevent a permanent shutdown – the report was published a month before the decree – would also be “unprecedented.”

A sixth reactor is also in question. This one, Fessenheim, was expected – six years ago – to be the first one to be closed, but only in exchange for a new EPR reactor at Flamanville (which has yet to open). But even without Flamanville, the closure of Fessenheim is proving difficult. In January, French President Macron appointed Ecology and Solidarity Undersecretary Sébastien Lecornu to decide on the matter (report in French), a sign that the decision is highly political.

In official statements, EDF remains adamant about keeping all reactors open. At the end of January, it announced that no other reactor should be closed after Fessenheim until 2029 (report in French). But just days later, it quietly volunteered to shut down four reactors on economic grounds in 2019.

EDF did not respond to requests for comments for this report.

Craig Morris (@PPchef) is the lead author of Global Energy Transition. He is co-author of Energy Democracy, the first history of Germany’s Energiewende, and is currently Senior Fellow at the IASS. Hat tip to Juri Hertel for the story.


WIRTSCHAFT ENTHÜLLUNGSBUCH

Französische Atomreaktoren in katastrophalem Zustand

Von Gesche Wüpper |  
Das älteste Akw Frankreichs: die Anlage im elsässischen Fessenheim      Quelle: REUTERS

  Wie sicher sind die Atomkraftwerke bei Deutschlands großem Nachbarn? Zwei französische Buchautoren bezweifeln ihren Zustand in einem Enthüllungsbuch. Bei zehn Reaktoren steige das Risiko besonders stark.

Das älteste Akw Frankreichs: die Anlage im elsässischen Fessenheim Quelle: REUTERS

Wie sicher sind die 58 französischen Atomreaktoren? Das Buch „Nucléaire, danger immédiat“ („Kernkraft, unmittelbare Gefahr“), das jetzt erschienen ist, wirft neue Zweifel auf.

Es sei nicht mehr die Frage, ob ein schwerer Unfall in Frankreich möglich sei, sondern vielmehr wann er passieren werde, meinen die beiden Autoren Thierry Gadault und Hugues Demeude. Die Gefahr eines schweren Unfalls sei noch nie so groß gewesen wie heute, warnen die Journalisten. Das, was sie während ihrer Recherchen gesehen hätten, sei katastrophal und beunruhigend. Immerhin wohnten zwei Drittel der französischen Bevölkerung weniger als 75 Kilometer von einem Atomkraftwerk entfernt.

Das Thema beherrscht die Schlagzeilen, seit die Sonntagszeitung „JDD“ vorab aus dem Buch von Gadault und Demeude zitierte. Es ist auch deshalb heikel, weil Kraftwerksbetreiber EDF (Electricité de France) eine Verlängerung der Laufzeiten der französischen Reaktoren auf bis zu 60 Jahre anstrebt. https://www.welt.de/wirtschaft/article173279982/Atomkraft-Enthuellungsbuch-bezweifelt-Zustand-von-franzoesischen-AKW.htm


Atommüll-Zwischenlagerung: Von Sicherheit, Öffentlichkeitsbeteiligung und Kritik

(Update) Die Zwischenlagerung hoch radioaktiver Atomabfälle ist auf dem Prüfstand. Das macht eine Veranstaltung des Nationalen Begleitgremiums (NBG) deutlich. Forderungen nach einer umfassenden gesellschaftlichen Debatte um die Sicherheitsanforderungen und künftige Lagerkonzepte sowie einer erweiterten Öffentlichkeitsbeteiligung bei der Atommüll-Zwischenlagerung adressierten das NBG und die TeilnehmerInnen letzten Samstag in Karlsruhe an den Deutschen Bundestag. Aufgefordert aber ist auch die Bundesregierung. Auf der Tagung glänzte das Bundesumweltministerium (BMUB) und die neue Bundesgesellschaft für Zwischenlagerung (BGZ) durch Abwesenheit. Dem Vernehmen nach sind die von den Aktivitäten des NBG not very amused (siehe auch wendland-net.de). Anwesend aber war das BfE. Kritik gab es auf der Tagung aber auch an den vom NBG vorgelegten Gutachten, die Basis der Diskussion waren. (Foto: Veranstaltung des NBG in Karlsruhe)

Show more...

Show less

  • Der BUND reagiert mit einer PM auf die Aktivitäten des NBG und fordert von den zuständigen Politikern in Bund und Ländern, aber auch von der Bundesregierung Maßnahmen für eine schnelle Überprüfung des Konzepts für Atommüll-Zwischenlager und mehr Problembewusstsein.
  • Auch das Bundesamt für kerntechnische Entsorgungssicherheit (BfE) reagiert auf die Aktivitäten des NBG. Aus seiner Homepage formuliert das BfE „Fragen zur aktuellen Zwischenlager-Diskussion“ an das NBG und schreibt: „Zum Thema Zwischenlagerung hochradioaktiver Abfälle haben sich in der jüngsten Vergangenheit einzelne Vertreter von Umweltverbänden und Gremien positioniert. Das Bundesamt für kerntechnische Entsorgungssicherheit (BfE) als zuständige Genehmigungsbehörde für Zwischenlager hat zu aktuell vorliegenden Stellungnahmen, die vom Nationalen Begleitgremium beauftragt wurden, eine Reihe von Fragen ermittelt. Diese Fragen sind für weitere fachliche Bewertungen, insbesondere mit Blick auf die Sicherheit von Zwischenlagern, zentral.“ Die Fragen sind hier als PDF nachlesbar.

„An dem Workshop nahmen rund 90 Personen teil, darunter Bürgermeister von den Standortgemeinden, Kommunalpolitiker aus Baden-Württemberg, Vertreter/innen von Bürgerinitiativen, von Institutionen sowie Bürgerinnen und Bürger aus Stadt und Region Karlsruhe“, schreibt das NBG aus seiner Seite zu der Veranstaltung. Fazit aus Sicht des NBG: „Die Ergebnisse des vom Nationalen Begleitgremium veranstalteten Workshops „Zwischenlager ohne Ende?“ sollen als Empfehlung an den Deutschen Bundestag weitergeleitet werden. Das beschlossen die Teilnehmerinnen und Teilnehmer des Workshops am 13. Januar 2018 in Karlsruhe. Mit breiter Mehrheit sprachen sie sich dafür aus, dass frühzeitig ein Zwischenlagerkonzept erarbeitet wird, an dem die Bürgerinnen und Bürger beteiligt werden.“

In seinem Bericht fasst das NBG die Kernaussagen der beiden Gutachten zusammen, die sich einerseits mit dem Status der Zwischenlagerung hochradioaktiver Abfälle (Öko-Institut Darmstadt) befassen, andererseits Vorschläge macht, wie die künftige Öffentlichkeitsbeteiligung für die Bevölkerung aussehen könnte (Hagedorn/Gassner).

Mit diesen beiden Präsentationen von Beate Kallenbach-Herbert (Öko-Institut, PDF) und von Hagedorn/Gassner (PDF) wurde jeweils in die Themen eingeführt. Schriftlich nahm im Anschluss an die Veranstaltung der Physiker Wolfgang Neumann in einigen wesentlichen Punkten zu den vorgelegten Gutachten noch einmal Stellung (siehe gleich unten als Dokumentation). Dabei kritisierte er u.a. das Öko-Institut, das in seinem Gutachten im Grunde lediglich die Positionen der Entsorgungskommission der Bundesregierung übernommen habe und damit viele ungeklärte Aspekte nicht darstelle.

Wendland-net.de schreibt: „Beate Kallenbach-Herbert vom Öko-Institut Darmstadt verwies in ihrer gutachterlichen Stellungnahme auf die vielen ungeklärten Fragen. Es gebe erheblichen Forschungsbedarf hinsichtlich der Frage, welchen Einfluss eine überlange Lagerzeit auf das Behälterinventar habe. Bisher gebe nur das Instrument einer periodischen Sicherheitsüberprüfung, Messungen und eine Inaugenscheinnahme von außen. Für die Reparatur eines defekten Primärdeckels sei eine „heiße Zelle“ vonnöten, wegen der starken Strahlung also eine ferngesteuerte Arbeit hinter dicken Betonmauern. Doch weil bisher eine Langzeitlagerung nicht angedacht worden ist, gebe es nicht einmal ein Regelwerk zur Überprüfung des Behälterinventars.“

Ebenfalls im Wendland-net wird auch die folgende Kritik gebracht: „Prof. Bruno Thomauske, einst zuständig im Bundesamt für Strahlenschutz (BfS), warnte in der Diskussion eindringlich davor, bestehende Genehmigungen einfach zu verlängern. Defekte Hüllrohre von abgebrannten Brennelementen könnten zerbröseln, Thomauske schloss die Gefahr einer Kritikalität nicht aus. Zu bedenken sei auch, dass die 1.900 Castorbehälter, die es bis zum Ende der Atomkraftnutzung geben wird, bewegt werden müssen – hin zu einem Endlager. Seiner Meinung nach dürfe einem Endlagerstandort keinesfalls auch die Konditionierung vor Ort zugemutet werden. Denkbar seien mehrere zentrale Zwischenlager an denen die Behälter für die Endlager vorbereitet würden. Sehr deutlich kritisierte er auch, dass das BUMB und der neue Leiter der für die Zischenlager zuständigen BGZ nicht an der Veranstaltung teilnehmen. Was den Schutz vor Terrorismus anging, so bezweifelte Thomauske, dass die bestehenden Wandstärken von Ahaus und Gorleben ausreichten, und plädierte für Neubauten oder eine gänzlich neue Zwischenlagerstrategie.“

Anlass für die Debatte ist unter anderem, dass die Zwischenlagerung deutlich länger als bislang genehmigt stattfinden wird, weil sich die dauerhafte unterirdische Lagerung des Atommüll deutlich nach 2050 verschieben wird. Das und erhöhte Anforderungen beim Terrorschutz haben dazu geführt, dass eine grundsätzliche Debatte über den weiteren Umgang mit der Zwischenlagerung der hochradioaktiven Abfälle in Gang gekommen ist. Dazu beigetragen haben auch die Aufhebung der Genehmigung für das Zwischenlager Brunsbüttel durch ein Urteil des OVG Schleswig, die Lagerung von hochradioaktivem Atommüll in Jülich ohne atomrechtliche Genehmigung sowie die jüngste Entscheidung, dass bei Lubmin aufgrund der fehlenden Möglichkeiten für die Nachrüstung einer Terrorabwehr ein neues Zwischenlager gebaut werden muss.

Beim NBG heißt es zum Hintergrund weiter: „Der Ko-Vorsitzende des Nationalen Begleitgremiums, Prof. Dr. Klaus Töpfer betonte, dass es erforderlich sei, sich frühzeitig Gedanken darüber zu machen, wie die zeitliche „Lücke“ geschlossen werden könne. Töpfer: „Wenn der Aufbau von Vertrauen beim Thema Zwischenlager nicht gelingt, wird es auch schwierig, ein Endlager zu finden.“

Dem Wendland-net.de ist in dieser Sache zu entnehmen: „Ratlos blieben die TeilnehmerInnen der Veranstaltung mit der Frage zurück, wer sich in Zukunft der Probleme der Zwischenlagerung annehmen wird. Es sickerte durch, dass das BUMB verhindern will, dass das Nationalen Begleitgremium sich mit dieser Frage beschäftigt. „Deshalb muss jetzt vom BUMB nachdrücklich gefordert werden, ein Gremium zu schaffen, bei dem sich die interessierte Öffentlichkeit, die Initiativen und die betroffenen BürgermeisterInnen einbringen können,“ so das Resümee von Asta von Oppen nach der Veranstaltung.

In Deutschland sind Zwischenlager für hochradioaktive Abfälle an insgesamt 16 Standorten in Betrieb. Die jeweils auf 40 Jahre befristeten Genehmigungen laufen in den Jahren 2034 bis 2047 aus. (Die Zwischenlager Brunsbüttel und Jülich verfügen derzeit über keine gültige Genehmigung.) Nach jetzigem Stand steht nach dem Auslaufen der Genehmigungen noch kein Endlager zur Verfügung. Es sind derzeit drei Varianten für eine Verlängerung der Zwischenlagerung in der Diskussion: Die bestehenden Zwischenlager werden ertüchtigt und die Verlängerung der Genehmigungen beantragt; es werden die Zwischenlager an einigen, wenigen Standorten zusammengeführt; es wird ein zentrales Eingangslager geschaffen.“

DOKUMENTATION STELLUNGNAHME WOLFGANG NEUMANN:

Nationales Begleitgremium: Workshop „Zwischenlager ohne Ende?“ (PDF)

Sehr geehrte Mitglieder des Nationalen Begleitgremiums,

während der Diskussion zu den beiden vom Nationalen Begleitgremium beauftragten Gutachten habe ich leider keine Gelegenheit bekommen dazu Stellung zu nehmen. Dies möchte ich hiermit schriftlich nachholen.

Sicherheitstechnisches Gutachten

Auf Grundlage meiner langjährigen Erfahrung als Gutachter zum Thema Zwischenlagerung stimme ich mit vielen Ausführungen im Gutachten, insbesondere zum Forschungsbedarf, überein. In einigen durchaus zentralen sicherheitstechnischen Aspekten teile ich die Bewertungen in der „Gutachterlichen Stellungnahme zu wichtigen sicherheitstechnischen Aspekten der Zwischenlagerung hoch radioaktiver Abfälle“ jedoch nicht.

Die Gutachter machen sich offenbar die Ergebnisse des ESK-Stresstests zu Zwischenlagern (1) von 2013 zu Eigen. Aus meiner Sicht hat die ESK ihre Bewertung teilweise auf unzureichender Grundlage vorgenommen. Sie hat sich beim Flugzeugabsturz auf die in den Genehmigungsverfahren vom Bundesamt für Strahlenschutz betrachteten Szenarien beschränkt. Das OVG Schleswig-Holstein hat den Sicherheitsnachweis mit diesen Szenarien in seinem Urteil als unzureichend betrachtet (2) und damit die Zweifel der Kläger bestätigt. (3) Das gilt bereits für die nach dem sog. STEAG-Konzept gebauten Zwischenlager. Die nach dem WTI-Konzept gebauten Zwischenlager sind deutlich weniger robust ausgelegt und die alten zentralen Zwischenlager noch weniger. Auch der in Abrede gestellte „Cliff-Edge“-Effekt ist möglich, wenn es zum Beispiel nach einem Flugzeugabsturz zum Versagen der Dichtungen mehrerer Behälter durch einen lang anhaltenden Kerosinbrand kommt.

Das führt zu einem sprunghaften Anstieg von radioaktiven Freisetzungen und damit auch von Strahlenbelastungen für Personen in der Umgebung. (4)

Insgesamt ergibt sich aus meiner gutachterlichen Sicht, dass die redundante Auslegung (Behälter und Gebäude) gegen sehr schwere Einwirkungen von außen insbesondere für eine längerfristige Zwischenlagerung erforderlich ist.

Die Gutachter für das NBG haben zwar die Notwendigkeit von Heißen Zellen zu

  • Reparatur von Behältern (z.B. im Falle des Versagens von Primärdeckeldichtungen) in Kapitel 6, S. 32
  • Untersuchung von Inventar zur Verifizierung der theoretischen Verhaltensprognosen in Kapitel 8, S. 55

angedeutet, aber letztendlich keine konsequente Umsetzung eingefordert. Es wird lediglich auf Forschungsbedarf verwiesen. Ich halte dagegen die Errichtung von Heißen Zellen auf jeden Fall für erforderlich. Nur dann kann die erforderliche Störfall- vorsorge getroffen und die Handhabbarkeit der Brennelemente für die Endlagerung sichergestellt werden. (5)

Im Vortrag zum Gutachten wurde ausgeführt, dass die Ergebnisse der Periodischen Sicherheitsüberprüfung (PSÜ) der Öffentlichkeit zugänglich gemacht werden könnten. Ich möchte darauf hinweisen, dass dies gegenwärtig selbst nach einem UIG-Antrag nur sehr unzureichend geschieht. Bspw. wurden vom grüngeführten Umweltministerium in Niedersachsen erst Unterlagen zur Verfügung gestellt, auf deren Grundlage wenigstens ansatzweise eine sachverständige Bewertung möglich war, nachdem auf Herausgabe geklagt wurde.

Partizipationsgutachten

Auf Grundlage meiner langjährigen Erfahrung durch Beteiligung an vielen Genehmigungs- und Verwaltungsgerichtsverfahren sehe ich im Gutachten für das NBG „Beteiligung der Bürgerinnen und Bürgern an einem Diskurs über die Zwischenlagerung hochradioaktiver Abfälle“ eine Reihe guter Vorschläge zur Beteiligung der Bevölkerung. Ich möchte auf zwei Aspekte eingehen.

Den Vorschlag, mit Prüfraster und Vertrauensperson die Kontroverse zum Geheimschutz zu verringern (Kap. 3.6) halte ich für einen möglichen Weg. Hierfür ist allerdings eine neue Festlegung erforderlich, welche Informationen den Betroffenen und Gerichten zur Verfügung gestellt werden können. Zum Beispiel ist es sicher nachvollziehbar, das der Auftreffwinkel eines Flugzeuges, bei welchem der größte Schaden verursacht wird, nicht veröffentlicht wird. Die für einen Brand unterstellte Kerosinmenge und die Abbrandrate können aber einer sachverständigen Prüfung zugänglich gemacht werden, ohne die Gefahr für einen Angriff zu erhöhen.

Für richtig halte ich auch die Abgrenzung zwischen der nach Atomrechtlicher Verfahrensverordnung (AtVfV) gebotenen Öffentlichkeitsbeteiligung und der Partizipation bei Zwischenlagerkonzept und Standortsuche (Kap. 3.7). Hinweisen möchte ich aber darauf, dass die sog. frühe Öffentlichkeitsbeteiligung (§ 25 Abs. 3 VwVfG) die Anforderungen der AtVfV nicht abdeckt. Vielmehr ist neben dieser frühen auch eine Öffentlichkeitsbeteiligung erforderlich, wenn bis zu einem gewissen Grad konsolidierte Antragsunterlagen vorliegen und der Behördengutachter eine erste Bewertung vor- genommen hat.

Die in der Diskussion zum Gutachten von Herrn Coordes (EWN) vorgebrachte Position, ein Partizipationsprozess zur weiteren Zwischenlagerung verzögere die Endlagerung und hätte keinerlei sicherheitstechnischer Vorteile, möchte ich entschieden zurückweisen. Bei einem Vergleich des Zeitrahmens im Gutachten mit den in der Diskussion befindlichen realistischen Zeiten zu Standortfestlegung und Genehmigung für ein Endlager ist ersichtlich, dass keine Verzögerung unterstellt werden kann. Sicherheitstechnische Vorteile ergeben sich nach meiner Meinung in mehrfacher Hinsicht. Durch die Partizipation wird zusätzlicher Sachverstand bezüglich Sicherheitsbewertung und Standortbeschaffenheit in das Verfahren eingeführt. Die dadurch entstehende Diskussion ist für die Weiterentwicklung und Verbesserung förderlich.

Ohne Partizipation erhöht sich die Wahrscheinlichkeit für Klagen, die zur Verzögerung der Umsetzung einer möglichst sicheren Zwischenlagerung führen. Nicht zutreffend ist auch die von Herrn Coordes behauptete generelle Konfliktfreiheit am Standort Lubmin. Vor dem Bau und im Genehmigungsverfahren für das Zwischenlager gab es erhebliche Kontroversen. Das Zwischenlager wurde auch beklagt. Erneute Kontroversen gab es, als entgegen der ursprünglichen Zusagen auch die Einlagerung radioaktiver Abfälle bekannt gegeben wurde, die nicht aus Greifswald oder Rheinsberg stammen.

Beide Gutachten

In beiden Gutachten wird ohne Diskussion von der Fortsetzung der Zwischenlagerung mit Behältern, die in einem an der Oberfläche befindlichen Gebäude stehen, ausgegangen. Es gibt international aber auch andere trockene Zwischenlagerkonzepte. Zum Beispiel das in den USA nach 2001 entwickelte Konzept, die beladenen Behälter in Einzel-Betonsilos unterhalb der Erdoberfläche zu lagern (HI-Storm UMAX). Ich möchte dieses Konzept hier nicht im Vergleich zum deutschen Konzept bewerten. Nach meiner Meinung muss aber vor einer Entscheidung zur zukünftigen Zwischenlagerung eine Abwägung stattfinden. Neben der konzeptionellen Sicherheit müssen dabei unter anderem auch die standortbezogene Umsetzbarkeit und die erreichbaren Zeithorizonte berücksichtigt werden. In Diskussionen der Anti-AKW-Bewegung wird immer wieder auf vermeintlich bessere Zwischenlagerkonzepte hingewiesen.

Hannover, 14.01.2018, Ing. grad Dipl.-Phys. Wolfgang Neumann

Anmerkungen

1 Entsorgungskommission: „ESK-Stresstest für Anlagen und Einrichtungen der Ver- und Entsorgung in Deutschland, Teil 1: Anlagen der Brennstoffversorgung, Zwischenlager für bestrahlte Brennelemente und Wärme entwickelnde radioaktive Abfälle, Anlagen zur Behandlung bestrahlter Brennelemente“; Stellungnahme vom 14.03.2013

2 Schleswig-Holsteinisches Oberverwaltungsgericht, Az 4KS 3/08, Urteil verkündet am 19. Juni 2013

3 Gruppe Ökologie e.V.: „Stellungnahme zu einem Flugzeugabsturz auf das Standort-Zwischenlager am KKB“; Wolfgang Neumann, erstellt im Auftrag der Kläger, Hannover, Februar 2005

4 Gruppe Ökologie e.V. und Umweltinstitut München e.V.: „Stellungnahme zu Flugzeugabsturz und Einwirkungen Dritter auf das Standort-Zwischenlager Gundremmingen“ sowie „Berechnung der Strahlenbelastung nach Flugzeugabsturz und Einwirkungen Dritter auf das Standort-Zwischenlager Gundremmingen“; im Auftrag von Forum Gemeinsam gegen das Zwischenlager und für eine verantwortungsvolle Energiepolitik e.V., Hannover und München, September 2004

5 intac GmbH: „Zur Notwendigkeit einer Heißen Zelle an Zwischenlagerstandorten“ und „Zwischenlagerung von CASTOR® HAW 28M – Ergänzung zur Studie ‚Zur Notwendigkeit von Heißen Zellen an Zwischenlagerstandorten‘“; Wolfgang Neumann im Auftrag von Greenpeace e.V., Hannover, Mai 2014 und Januar 2015

Show less


EU-Gericht bestätigt, dass EDF französische staatliche Beihilfen zurückzahlen muss

 BRÜSSEL (Reuters) – Ein EU-Gericht hat am Dienstag entschieden, dass die Europäische Kommission zu Recht verurteilt hat, dass Frankreich staatliche Beihilfen in Höhe von 1,37 Milliarden Euro von der Versorgungsgruppe EDF (EDF.PA) zurückfordert.

Die Kommission hat die Entscheidung im Jahr 2015 getroffen, nachdem das Gericht eine frühere Rückzahlungsanordnung aufgehoben hatte. Das Gericht erklärte, dass EDF den Betrag im Oktober 2015 zurückgezahlt habe, obwohl er daraufhin beim Gericht der Europäischen Union, dem zweithöchsten Gericht der EU, Klage eingereicht habe.

Von: Mark Johnston [mailto:mark.johnston.esq@gmail.com] Gesendet: Dienstag, 16. Jänner 2018 12:21
An: FoEE LIST; NCG LIST
Betreff: [no-nukes] EDF loses appeal against recovery of unpaid taxes due to unfair tax break 20 years ago | ECJ + Reuters

For info:

General Court of the European Union

PRESS RELEASE No 03/18

Luxembourg, 16 January 2018

Judgment in Case T-747/15

EDF v Commission

The General Court of the EU upholds the Commission’s decision ordering France to

recover €1.37 billion in the context of State aid granted to EDF

 


Expert Statement on the

NATIONAL REPORT OF THE REPUBLIC OF BELARUS ON THE BELARUSIAN NPP OBJECTIVE SAFETY REASSESSMENT (STRESS TESTS)

Commissioned by Greenpeace Central and Eastern Europe

Authors: Dipl.Phys. Oda Becker Mag. Patricia Lorenz

final editor: Ir. Jan Haverkamp January 2018

This report was written in commission for Greenpeace Central and Eastern Europe as input to the public consultation in the stress test of the Astravets nuclear power plant in Belarus, carried out by the Belarusian nuclear regulator in cooperation with ENSREG and the European Commission.

The authors are responsible for the content.

Final editing: Ir. Jan Haverkamp – Greenpeace Central and Eastern Europe

Correspondence about the content of this report: oda.becker@web.de       jan.haverkamp@greenpeace.org

Hannover / Vienna / Amsterdam, 23 January 2018

  1.  http://www.neimagazine.com/news/newseuropean-stress-tests-for-belarus-npp-4930468/
  2.   National Report of the Republic of Belarus on the Belarusian NPP objective safety reassessment  (Stress tests) –http://www.ensreg.eu/sites/default/files/attachments/belarus_stress_test_national_report-
  3.  https://www.baltictimes.com/belarus__n-plant_stress_tests_fail_to_answer_lithuania_s_key_questions_-_watchdog/

Show more...

1 Introduction

The Belarusian NPP Astravets includes two units which of 1,200 MWe nominal output; they are currently under construction. The Belarusian NPP construction site is located in the North-East of Grodno region, in the Astravets district, 19 km North-East of Astravets town. The distances to the closest neigh-boring states are: 23 km to the Republic of Lithuania, 110 km to the Republic of Latvia, the Republic of Poland’s border is 200 km away, the Russian Federation 150 km and Ukraine is 320 km.

In July 2012, a turnkey contract to supply the units worth $10bn was concluded with Russia’s state nuclear energy corporation Rosatom. Russia is providing most of the finance through a soft loan. In December 2012, Belarus approved a draft intergovernmental agreement on cooperation in the area of nuclear safety with Russia. First concrete was poured in 2013 for unit 1 and in 2014 for unit two.

It is estimated that the power unit 1 of the Belarusian NPP will become critical for the first time in 2019. Unit 2 is scheduled for start-up in 2020.

On March 11, 2011 a serious accident at Fukushima-1 NPP (Japan) was triggered by an earthquake and followed by a tsunami. In consequence operating utilities and regulatory bodies faced the need for a detailed analysis of the causes and lessons learned. They had to develop and implement actions to prevent serious accidents caused by extreme events with low probability and to mitigate negative impact for people and environment.

On March 25, 2011 the European Council announced that safety at European nuclear power plants should be reviewed on the basis of a comprehensive and transparent risk assessment (stress tests).

On May 13, 2011 the European Nuclear Safety Regulatory Group (ENSREG) and the European Commission agreed upon the technical requirements for stress tests of European nuclear power plants. In accordance with ENSREG, the technical requirements of these stress tests are an objective reassessment of nuclear power plants in the light of the events at Fukushima-1.

In June 2011, the Republic of Belarus acceded to the Joint Declaration of the European Union and neigh-boring states on comprehensive risk and safety assessments of nuclear plants (stress tests) and committed to itself to implement them.

Although Belarus is not a European Union (EU) member states, Belarus participates in the EU’s Eastern Partnership, which allows for discussions of trade and other issues. The EC has played an observer role in the construction of Astravets NPP. But in 2009 the European Parliament concluded in an all-party preliminary meeting before construction start, „that internationally-agreed regulatory steps had not been satisfactorily incorporated into the national licensing process“. In June 2016, members of the European Parliament (MEPs) used a plenary debate to ask the European Commission (EC) whether the twin-unit plant complied with EU nuclear safety rules and how the EC plans to ensure the plant conducts stress tests to assess the safety and robustness of the plant.1

In 2017 Belarus submitted its national stress tests report on the plant2 to the European Commission for review. The European Commission will summarize EU member states‘ comments and questions and submit them to Belarus. The EU’s executive body will make its final assessment only after it receives Belarus‘ answers to the questions asked. The stress tests were performed by Atomprojekt, a subsidiary of Russia’s Rosatom, the Astravets project’s main contractor, in 2016. 3

  1.   http://www.neimagazine.com/news/newseuropean-stress-tests-for-belarus-npp-4930468/
  2.   National Report of the Republic of Belarus on the Belarusian NPP objective safety reassessment  (Stress tests) –http://www.ensreg.eu/sites/default/files/attachments/belarus_stress_test_national_report-
  3.  https://www.baltictimes.com/belarus__n-plant_stress_tests_fail_to_answer_lithuania_s_key_questions_-_watchdog/

The independent nuclear experts Oda Becker and Patricia Lorenz were commissioned by Greenpeace to prepare an Expert Statement on this stress tests report. The objective of the assessment was to investigate whether the information presented in this report is reliable and sufficient to determine the potential risks of this NPP and prepare questions asking for lacking information and not addressed issues.

We presume that the EU Stress Test peer review process to be conducted in Belarus in the coming months will not deviate from past stress test exercises and will be performed in full transparency according to the „principle for openness and transparency“ as adopted by ENSREG in February 2011.

According to this principle, the Belarus national stress test report, core element of the upcoming peer review, was published on the ENSREG website and is open for public consultation from 13 November 2017 to 13 January 2018.4 This expert statement will be submitted in the framework of this procedure.

Although this evaluation does not claim to be exhaustive, it comes to the following conclusion: A high amount and wide range of additional information is necessary to assess the possibility of accidents and their consequences. However, the information at hand indicates that a severe accident at the Belarusian NPP with a major release and consequences cannot be excluded.

 http://www.ensreg.eu/EU-Stress-Tests/Country-Specific-Reports/EU-Neighbouring- Countries/Belarus

2 Reactor type

For the Belarusian NPP the AES 2006 design was chosen, a VVER -1200. The VVER-1200 is an improved version of the VVER-1000 unit with a longer design life-time, higher built-in capacity and higher thermal efficiency. According to the STRESS TESTS REPORT (2017, p. 16), the design life-time for the unit is 50 years, for the reactor 60 years.

Development of the reactor design

The development of the AES-2006 design started after the year 2000 and was finalized in 2006. On top of the increased power output to 1,200 MWe, the AES-2006 plant has additional safety features compared to the advanced VVER-1000 plants.

There were two early post-Chernobyl designs, AES-91/V-428 (Saint Petersburg)—exported to China— and AES-92/V-412 (Moscow)—exported to India. The reactors were essentially the same as their predecessor, the VVER-1000/V-320, but with added safety systems including a core-catcher and some passive safety systems. Figure 1 shows the evolution of the VVER-1000 types5 :

Figure 1: VVER Technology Evolution

The VVER-1200 design is to be developed as a serial design for construction both in Russia and abroad. There are two design modifications which differ in structure and layout of safety systems. The basic characteristics are the same: the V-392M (now VVER-1200M) tends to rely more on passive safety systems and the V-491 (now VVER-1200E) more on active safety systems.

Two units of the AES-2006/V-392M are being built at Novovoronezh in Russia, the first unit started commercial operation in 2017. It is the first of two units at Novovoronezh II – the lead project for the deployment of the AES-2006 design incorporating a Gidropress-designed PWR. The construction of Novovoronezh II, units 1 and 2 (or Novovoronezh units 6 and 7) began in June 2008 and July 2009, respectively. The VVER-1200M design is also being implemented at NPP Rooppur in Bangladesh.

 2010 GIDROPRESS (2010): Review of VVER-1000 and AES-2006; I.F. Akbashev, I.F.; Piminov, V.A.; et al.; Presentation; IAEA Technical Meeting on Irradiation embrittlement and life management of reactor pressure vessels; Znojmo (Czech Republic); 18–22 October 2010;

The VVER-1200/V-491 design (now: VVER-1200E) is being implemented at Leningrad (LNPP-2), at Astravets NPP in Belarus, at Hanhikivi-1 NPP in Finland, at Paks-II NPP in Hungary. The VVER-1200E design was developed by “Atomenergoproekt” St. Petersburg (SPbAEP).

Stage of VVER-1200/V491 design development

Today, no nuclear power plant with the AES-2006 reactor type VVER-1200 (V-491) is in operation. In addition to the units in Belarus, two units are under construction in Russia. They have been subject to several delays.

Actually, the VVER-1200/V491 is an as-yet untested design and the known incidents and deficiencies during operation and construction of Russian-built NPPs provide evidence that Rosatom and its structures have serious problems which are of systemic nature and cannot guarantee sufficient quality management at their NPP construction sites.

At the Leningrad II site two units of reactor type VVER-1200/V-491 are under construction. The construction of unit 1 started in October 2008, and should have been commissioned in October 2013. However, a part of the outer containment collapsed in 2011 and led to a delay of the schedule. Commissioning is now expected to take place during 2018. The construction of the second unit started in April 2010, commissioning start is envisaged for 2020.6

Delays during construction can be an indication that the detail design of the plant has been not completed before start of construction works, and was partly continued in parallel with the construction works. If the detailed design process does not advance as smoothly as planned, this can result in delays. This was illustrated by the EPR project Olkiluoto-3, for which startup has so far been delayed from 2009 to 2019 or even later, mainly due to problems connected to the design of the I&C system. It is unclear to which degree this is also valid for Leningrad-II.

When plants of the same type are built at sites in other countries, it is necessary in any case to adapt the design to the characteristics of the site as well as to the regulations of the country in question.

Other types of Generation III reactors have undergone or are still undergoing extensive design review processes in other countries, most notably the UK Generic Design Assessment (e.g. EPR, AP1000). As part of this process, comprehensive technical documents are made public, increasing transparency and improving the opportunities for independent review of reactor types. The VVER-1200/V491 has not yet undergone a procedure of this kind. The stress tests report does not explain to which degree the Belarus NPP will be identical with the Leningrad-II NPP.

Regulations and Certification

There is no statement on the compliance of the design with the EUR requirements. According to the EIA-Report for the new NPP Bohunice III, this reactor type has not yet received EUR certification yet.7

The design currently does undergo scrutiny with the nuclear regulator STUK in Finland for the Hanhikivi project.

  1.   http://www.world-nuclear.org/information-library/country-profiles/countries-o-s/russia-nuclear- power.aspx
  2.   http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/umweltpolitische/ESPOOverfah ren/UVP-EBO3/uve/JESS_UVP_Bericht_NJZ_An02.pdf

The following questions should be answered:

  •   Which life-time is envisaged for the Belarusian NPP? Is a life-time extension envisaged?
  •   Are there any differences between the design of the units of the Belarusian NPP and the design of Leningrad II?
  •   Are there any differences between the design of the units of the Belarussian NPP and the design of Hanhikivi?
  •   What is the status of EUR certification of the reactor type of the Belarusian NPP?

3 Radioactive waste and spent fuel

Spent fuel which will be produced during the operation of the new power plant will be stored for 10 years in the spent fuel pool located close to the reactors. The capacity of the spent fuel pool is based on the following assumptions: storage of spent fuel for ten years; arrangement of the spent fuel removed from the reactor core under emergency conditions and arrangement of leak-tight bottles for damaged spent fuel. (STRESS TESTS REPORT 2017, p. 26)

High-level radwaste (HLW) is stored in steel capsules for the entire lifetime of the power unit at the nuclear power plant site. (STRESS TESTS REPORT 2017, p. 31)

Capacity of the storage facility is designed to store: very low-level, low-level and intermediate-level waste (SRW in drums, solidified LRW in non-returnable containers) generated during 10 years of the power unit operation; conditioned very low-level, low-level and intermediate-level radwaste is stored in the storage facility during 10 years. When the period of interim storage is over very low-level, low- level and intermediate-level radwaste is transported to the disposal site for long-term storage and/or disposal. (STRESS TESTS REPORT 2017, p. 31)

The container car for the spent fuel transportation to the fuel recycling plant provides accommodation, fastening and transportation of the SNF transportation container in accordance with the regulations for SNF transportation.(STRESS TESTS REPORT 2017, p. 29)

Assessment

It is not mentioned where the HLW will be stored and how the residual heat generated by this waste will be removed. According to the international standards and practices, HLW has to be stored in a similar way as SF.8

The Joint Institute for Power and Nuclear Research in Belarus is conducting studies on the best methods for storage and treatment of nuclear waste generated by the Belarusian NPP. Belarus is planning to build a storage facility at the plant for low-, very low- and intermediate level nuclear waste.

During 60 years of operation, Astravets will generate about 960 cubic meters of very low-level waste (VLLW), 3,840 cubic meters of low-level waste (LLW), 600 cubic meters of intermediate-level waste (ILW) and 60 cubic meters of high-level waste (HLW). On top Belarus expects that 3,960 cubic meters of solidified liquid waste will be generated during the plant’s lifetime.

The document envisages that high-level waste would be stored at the Astravets plant during its service life and that very low-, low- and intermediate-level waste would be stored in 200-liter casks in a near-surface facility constructed somewhere in Belarus, not at the plant site. The site for the storage facility is to be chosen by 2023.

The report estimated that the storage facility for very low-, low- and intermediate-level waste will cost $10 million.

The first phase of the storage facility would be capable of storing 1,560 cubic meters of waste and must be completed by 2028 so that waste generated during the first 10 years of Astravets’ operation can be stored there, according to Belarus’ national strategy for managing nuclear waste.

In 2013, Anatoly Bondar, the chief engineer for the plant’s construction, suggested that after the initial 10 years, the service time of the planned storage facility might be extended, or the waste might be transported to a new storage facility to be built by 2038. However, there has not been any new public discussions on this issue.

 www.umweltbundesamt.at/fileadmin/site/umweltthemen/umweltpolitische/ESPOOverfahren/U VP_paksII/REP0533_PAKSII.pdf

The strategy report does not contain any information on spent nuclear fuel management, because spent fuel will be returned to Russia for reprocessing according to intergovernmental agreements between Russia and Belarus.9 According to Russian legislation, resulting waste will have to be repatriated to Belarus, because Russia is not allowed to import radioactive waste for final storage.

Belarus is planning to return spent nuclear fuel from its planned NPP Astravets-1 and -2 to Russia for reprocessing. For the management of the spent fuel is the so-called “closed” fuel cycle10 envisaged, with reprocessing the spent fuel and recycling of the recovered plutonium and uranium.

Reprocessing and transportation of spent fuel and radioactive waste carry additional risks for people and the environment. Thus, it would be seen as a good decision if Belarus will cancel the option of reprocessing abroad.

According to WNA, a radioactive waste management strategy based on IAEA principles was adopted in June 2015. It builds on regulations for nuclear and radiation safety approved by the Ministry of Emergency Situations in September 2010. The strategy also considers construction of a Deep Geological Depository for the disposal of HLW following decommissioning of the plant.11

A Deep Geological Repository will have to be built in Belarus for the final disposal of HLW and long- lived LILW.

Accidents concerning RW and SF

The quantities of the RW that could be produced during a severe accident are not given.

Accidents affecting the RW management facilities to be established on site should be evaluated and their impact on the environment considered. The impacts of a possible accident have to be analyzed despite its low probability.

The following questions should be answered:

  •   Does a national strategy / program for the management of spent fuel exist in Belarus?
  •   Where will the high-level waste (HLW) be stored and how will residual heat be removed from the high level waste?
  •   Is reprocessing abroad the only envisaged option for the management of spent fuel? If yes, are there any intentions to abandon this option?
  •   Which types and quantities of RW following severe accidents are expected?
  •   Are radiological consequences of accidents affecting the RW management facilities to be established at the Belarusian NPP site evaluated?
  •   Are there any plans to transport the high-level waste from reprocessing of the spent fuel in Russia back to Belarus?
  •   Are the costs for the management (including storage and disposal) of radioactive waste and spent fuel included in the calculated energy production costs?
  •   At what stage are the plans for the preparation and construction of a final disposal of HLW, long-lived LILW a Deep Geological Repository in Belarus?
  1.  Nuclear Fuel, Global Platts, July 17, 2017
  2.  This fuel cycle is not really closed, because long-lived radionuclides remain after reprocessing and also must be stored.   http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/belarus.aspx

4 Load-following operation

It is not clear to which extent load-following operation is envisaged for the Belarusian NPP. According to the published documents load-following operation is envisaged for the Paks II NPP, which is the same reactor type as the Belarusian NPP.

NPPs in Europe are mainly used in base load operation. Their flexibility is limited to a few percent of nominal power. For new plants (under construction and planned) load following is supposed to be fully implemented. But there is very little experience from operation practice. Investigations into the possible impacts of load following operation are limited and do not allow conclusions on the impacts in future.

Plants being built today, e.g. according to European Utility Requirements (EUR), are supposed to have load-following capacity as a design feature. Even if a high flexibility is promised for the new reactors, some more research will be necessary until load following with the necessary capacity can be implemented.

Controlling the reactor core during load-following is challenging and difficult also for advanced reactors and in particular for reactors with large cores. The reactor has to perform the load changes while maintaining the core limitations for local power peaking and safety margins.

Operating NPPs in load-following mode causes technical disadvantages, because plant components are exposed to numerous thermal stress cycles; this leads to faster aging and requires more sophisticated systems for reactor monitoring and control.

Also, an economic disadvantage of load-following operation of NPP in a larger power range occurs if the plants are operated on reduced power.

The following questions have to be answered:

  •   What is the expected extent of the load-following operation for the Belarusian NPP?
  •   Are there any experiences with load-operation for the AES-2006 design?
  •   Which other AES-2006 plants will operate in load-following mode?
  •   Which is the possible impact of the load-following operation on the Belarusian NPP?
  •   How could any envisaged load-following operation threaten the safety of the Belarusian NPP?
  •   What is the impact of load-following operations on the economic efficiency of the Belarusian NPP?

10

5 Protection against airplane crash and terror attacks

According to the developer of the VVER-1200/V491, the design basis aircraft crash corresponds to the following load: Crash of an airplane with a mass of 5.7 t, at a speed of 100 m/sec.12It is noteworthy that this aircraft crash represents a considerably smaller load than those assumed for many newer Generation II plants. For example, for German plants in operation since the 1980s 20 tons and 215 m/s are assumed, corresponding to the crash of a Phantom fighter-bomber.13The possibility of a Belarusian military aircraft crash was left out. The probability of a Lithuanian military aircraft crash is 4.2х10-12 per year.14

The double containment consists of an outer protective concrete containment with a thickness of 800 mm in the cylindrical part and of 600 mm in the spherical dome and an inner leak-tight reinforced concrete containment with a thickness of 1,200 mm in the cylindrical part and 1,000 mm in the spherical dome. (STRESS TESTS REPORT 2017, p. 19)

The structural design of the reactor building appears to be well in line with the general standard of Gen III plants. A design on the basis of such loads also provides a certain degree of protection against the crash of a large commercial airliner. It is plausible that it provides good protection against the mechanical impact of the crash of a commercial airplane. It is not mentioned whether it is also a measure against the effects of impact induced vibrations.

However, structural protection against the impact of a large commercial airplane focuses on the outer containment and the fresh fuel storage. It has to be noted that the safety–relevant buildings are not designed to withstand the impact of a large airplane. The building sections of the four redundant trains of the safety systems are located side-by-side; they are separated, but directly adjacent without any physical distance, and hence several or all of them could be impaired by mechanical impacts. The same applies to the four diesel generators15.

According to STUK ́s assessment, not all parts of the design objectives and principles of the AES-2006 plant are consistent with Finnish safety requirements; the structural protection against airplane crashes is of particular concern.16

Also, there is no discussion in the documents at hand on the possible effects of combustion and/or explosion of aircraft fuel on structures and systems which are required to bring and maintain the plant in a safe state after the crash. This issue is addressed in the WENRA requirements for new reactors. It is stated that buildings or the parts of buildings containing nuclear fuel and housing key safety functions should be designed to prevent airplane fuel from entering them. Fires caused by aircraft fuel shall be assessed as different combinations of fire ball and pool fire; also, consequential fires shall be addressed.17

It has to be assumed that the Belarusian NPP is also vulnerable against other terror attacks.

Given the long life time of the proposed project (at least 50 years) and the needed cooling down period before final decommissioning, it is not possible to guarantee political stability in Belarus for

  1.  ASE 2015: Provision of containment integrity at Russian VVER NPPs under BDBA conditions; Atomstroyexport; IAEA Technical Meeting; Severe Accident Mitigation through Improvements in Filtered Containment Venting for Water Cooled Reactors; 31 August -3 September 2015
  2.   http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0291.pdf
  3.   https://www.iaea.org/sites/default/files/documents/review-missions/seed_mission_report_belarus_2017.pdf
  4.  St. Petersburg Research and Design Institute ATOMENERGOPROEKT (2011): Design AES-2006, concept solutions by the example of Leningrad NPP -2. Saint Petersburg, 2011
  5.  Finnish Radiation and Nuclear Safety Authority (2009): Preliminary Safety Assessment of the Loviisa 3 Nuclear Power Plant Project; Assessment Report; 2009
  6.  http://www.wenra.org/media/filer_public/2013/08/23/rhwg_safety_of_new_npp_designs.pdf  An analysis of potential environmental impacts after malevolent acts or acts of war against the project is therefore a vital aspect of a nuclear project.

The following information has to be provided:

  •   Is there any assessment of the possible radiological consequences of a large commercial airliner crash on the Belarusian NPP? Does this assessment also include possible effects of impact induced vibration and effects of combustion and/or explosion of aircraft fuel?
  •   What are the possible radiological consequences of a deliberate crash with a large commercial aircraft?
  •   Against which types of commercial aircraft is the Belarusian NPP protected by the design?
  •   Are back-fitting measures concerning aircraft crashes possible?
  •   Are the current WENRA recommendations18 for the protection of nuclear power stations against the crash of a large commercial airliner applied at the Belarus NPP?
  •   What are the international requirements on which the physical protection of the Belarusian NPP is based?   http://www.wenra.org/media/filer_public/2013/08/23/rhwg_safety_of_new_npp_designs.pdf

6 Natural hazards

On January 16-20, 2017, an IAEA mission for the safety assessment of the Belarusian NPP (SEED- mission) was held in the Republic of Belarus. In the course of the mission, both natural and man- caused external impacts were analyzed and characterized, the design parameters of the construction site were examined, the site and the environment were monitored and lessons learned at the Fukushima NPP accident were taken into account.

According to the STRESS TESTS REPORT (2017, p. 147), based on the results of the mission, IAEA experts noted that the NPP design parameters take into account external threats typical for the site such as earthquakes, floods and extreme weather conditions, as well as man-caused events. The international experts noted that the threat monitoring programs to be implemented throughout the life cycle of the Belarusian NPP are sufficient and properly provided in the NPP design. It was also noted that the Belarusian side took additional measures related to external events in view of the lessons of the Fukushima NPP accident.

Assessment

The Review Team offered the following suggestions19, which indicate the need for improvement:

  • the section documenting electro-magnetic interference and lightning should be improved in the Chapter 2 of the final SAR;
  • the site-specific seismic ground motion response spectrum should be properly documented in the final SAR, taking into account soil conditions and international practice (IAEA Safety Standard Series SSG-9); and
  • consideration should be given to future developments of safety improvements related to challenges highlighted in the IAEA Fukushima Daiichi Accident Report following completion of the stress test and PSA Level 1 and 2.

The following information has to be provided:

What are the follow-up measures in response to the 3 suggestions by the IAEA SEED mission? In which timeframe will these measures be implemented?

 https://www.iaea.org/sites/default/files/documents/review- missions/seed_mission_report_belarus_2017.pdf

7 Extreme weather conditions

Several extreme weather conditions are assessed in the STRESS TESTS REPORT (2017). For example strong winds based on the period analyzed, from 1961 to 2000.

Additionally, various combinations of these weather conditions were considered during the stress tests. Calculation of structures is performed taking into account unfavorable combinations of loads or their corresponding effects.

Table 5.1.2.1 presents an analysis of possible combinations of external effects. A detailed analysis will be given in the scope of PSA-1. STRESS TESTS REPORT 2017, p. 78)

Assessment:

Some extreme weather conditions, e.g. strong winds are analysed based on an outdated date base. Climate change trends still have to be taken into account.

According to the Intergovernmental Panel on Climate Change (IPCC), the type, frequency and intensity of extreme weather events are expected to change as the Earth’s climate. These changes could occur even with relatively small average changes to the climate. Changes in some types of extreme events have already been observed, for example, increases in the frequency and intensity of heat waves and heavy precipitation. Precipitation extremes are forecast to increase more than the average values. The frequency of extreme precipitation events is forecast to increase almost everywhere.

Many of the NPP design standards were based on an understanding of a climate system that is now 40 years out of date. Today, it is known that climate change is causing floods, droughts, and hurricanes to become stronger and more frequent. This means that the safety standards, even when fulfilled perfectly, are probably not sufficient to prevent disaster. Large and destructive floods once thought likely to happen only once in 100 years on average are now expected to happen every 20 years.

Sometimes, what is being thought to be a “worst case” scenario is not really the worst case. Just because there is uncertainty about how climate and weather will affect the reactors does not imply that ignoring the issue would be acceptable. Rather the opposite is the case: It would be negligent to ignore this uncertainty.

The following questions have to be answered:

  •   Are climate change trends increasing the frequency and intensity of extreme events taken into consideration for the evaluation for extreme weather conditions?
  •   Has the mentioned detailed analysis concerning possible combinations of external effects to be used as input for determining the scope of PSA-1 already been completed? If yes, are there any new results?

8 Earthquakes

According to the STRESS TESTS REPORT (2017, p. 40) the area of the Belarusian NPP site belongs to the Belarusian-Baltic seismo-tectonic region which is characterized by a relatively low seismic activity.

According to the GSZ-97-D map the Belarusian NPP site belongs to the 7-points zone. This assessment corresponds to the level of safe shutdown earthquake, SSE. For assessment of the design basis earthquake, DBE, the value of 6 points respectively is accepted (the frequency period is 1000 years with 5% exceedance probability for 50 years).

Buildings and structures as well as process pipelines, other communications and engineering structures of the Belarusian NPP are designed based on the following seismic impacts:

– Maximum horizontal acceleration of the SSE level – 0.12 g (7 points as per the MSK-64scale)

– Maximum horizontal acceleration of the DBE level – 0.06 g (6 points as per the MSK-64scale).

In the design bases of this reactor type,the value PGA=0.12g with a reserve 0.01g, i.e. 0.13g is accepted. (STRESS TESTS REPORT 2017, p. 41)

According to the data of integrated seismological and geodynamic researches of the NPP site location area (scale 1:500 000) and the neighboring area (scale 1:50 000), the values of intensity of DBE (SL1) and SSE (SL2) equal to 6 and 7 points of MSK-64 scale, respectively, are obtained for average soils.

To determine the DBE and SSE levels several analysis were performed and listed in the stress tests report.

All NPP equipment which when damaged can affect operation of the safety-related equipment either belongs to seismic category I or is physically separated from the safety-related equipment. The protection level during earthquakes with intensities up to the SSE level guarantees that safety-related equipment does not fail.

However, fire-fighting systems belong to seismic category II and III. Only the fire-fighting water tanks belong to seismic category I, maintaining water-supply under an earthquake with intensity from the DBE level to the SSE level. (STRESS TESTS REPORT 2017, p. 53)

The analysis has shown than the main RP equipment – reactor, SG, RCPU, RCP, pressurizer, ECB and connecting pipeline are provided with the required margin to withstand loads under an earthquake with 8-points intensity.

Resistance conditions under an 8-point earthquake are not provided for the emergency core cooling system (ECCS), injection and discharge pipelines and pressurizer system, metalwork of the reactor upper unit, spent fuel pool, RCPU anti-seismic fixation rod. The ECCS tank support shell, the ECCS pipelines and their fasteners are also not provided with the sufficient margin to withstand loads from the 8-point SSE. (STRESS TESTS REPORT 2017, p.61)

According the STRESS TESTS REPORT (2017, p. 148), in order to improve the seismic resistance, the following measures can be taken:

1. Seismic resistance of the ECCS and pressurizer system, as well as pipeline systems of small diameter, can be improved by installing additional anti-seismic supports along the length of the pipelines.

2. To improve the seismic resistance of the ECCS hydro accumulators and the racks of the spent fuel pool, the support design can be modified. For the racks of the spent fuel pool, stops can be installed to limit the rack movement in the horizontal plane. To improve the seismic resistance of the spent fuel pool metal structure, additional anti-seismic fixation can be applied. It is planned to install the fixation on the metal structure of the electrical connection block to limit the structure movement.

3. To improve the seismic resistance of the RCPS anti-seismic fixation rods at high earthquake level (8- point SSE, 7-point DBE) for combination of loads NO + DBE + DBA, the rods need to be strengthened.

4. For the safety systems and the safety-related systems, additional measures to improve the seismic resistance can be determined by the operating organization after the NPP start-up, based on the SMA methodology. When applying this methodology to the process flow diagram, the components critical for safe shutdown of an operated NPP are identified and estimated. The analysis is performed on the basis of engineering experience using the results of the NPP walk-down inspections for seismic stability, data on the actual state of the equipment fixation, etc. The necessity to improve the NPP seismic stability level will be determined by the operating organization based on expert findings of national or international organizations for supervision of atomic energy safe use.

Based on the calculations made in 1972 by the Central Research Institute for Complex Use of Water Resources and the Institute of Hydrodynamics the maximum water levels due to break of the Vileisk water basin dam located upstream do not exceed the level mark with 1% probability as the break wave from the dam location to the supposed water intake point is mainly quiet. It happens due to considerable remoteness of the water intake point from the dam location (140km) as well as due to the excising structures (roads, bridges, etc.) in the section between the dam and the water intake point which are the natural barrier for the break wave and accumulate considerable amount of water in the upstream territories.(STRESS TESTS REPORT 2017, p. 65)

According to the STRESS TEST REPORT (2017, p.66), it is proposed to reassess seismic margins for the equipment and pipelines referred to seismic category I by the results of the Belarusian NPP finished construction and commissioning using the SMA method specified in EPRI-NP-6041 and NS-G-2.13.

Assessment

The information provided could not clarify that the seismic hazard assessment is sufficient yet. Some information seems to be outdated.

The following questions have to be answered:

  •   When was the seismic hazard assessment performed? Are all investigations completed yet?
  •   Which IAEA recommendations were used for the seismic hazard assessment?
  •   Are the current WENRA recommendations on the assessment of natural hazards for the seismic hazard assessment used?
  •   Which of the measures to improve the seismic resistance (Stress Tests Report 2017, p. 148), will be implemented? And if, in which time frame?
  •   Because the calculation about the consequences of break of the Vileyka water basin dam is about 45 years old, are any new calculations done or planned?

9 Flooding

According to the STRESS TESTS REPORT (2017, p. 70) the Belarusian NPP site is not subject to flooding, as the design elevation of the site is 179.4 m BES, that is 51.5 m higher than the water elevation level at 0.01% confidence; ground waters and heavy precipitation have no effect on NPP safety.

It is explained that maximum water levels are conditioned by the wave after the break of the Vileyka reservoir which is located higher, based on the calculations made in 1972 by the Central Research Institute for Complex Use of Water Resources and the Institute of Hydrodynamics (Siberian department of the USSR Academy of Science, Novosibirsk) will not exceed the level elevation with 1% confidence as the break wave from the dam location to the supposed water intake point will mostly have calmed out. This will happen due to considerable remoteness of the water intake point (Malye Sviryanki) from the dam location (150 km), as well as due to the existing structures (roads, bridges, etc.) in the area between the dam and the water intake point which would be the natural barrier for the break wave and will accumulate a considerable amount of water in the higher-level territories. (STRESS TESTS REPORT 2017, p. 72)

The storm water treatment system and drainage systems at the industrial site of the Belarusian NPP are designed for normal operation conditions. In case of electric power failure, the storm water treatment system and drainage systems will not operate. The maximum daily volume of storm water calculated is 61804 m3. (STRESS TESTS REPORT 2017, p. 72)

Inspections are initiated by the licensee following stress-tests of the Belarusian NPP and initiation by the IAEA SEED mission for siting the Belarusian NPP.(STRESS TESTS REPORT 2017, p.73)

To assess safety margins, though there is no design basis flood threat foreseen in the design, this section conservatively applies a deterministic approach and considers the flooding of all NPP buildings located below 0.00 level. This flood affects safety systems critical for heat transfer from the reactor unit and spent nuclear fuel. A conservative analysis of the flood regime with affected SS and SCS systems and elements located below the 0.00 level has shown that flooding results in the loss of the following major functions which are critical for NPP safety (STRESS TESTS REPORT 2017, p. 74):

  •   heat transfer from spent nuclear fuel (FAK and JMN systems are not operating),
  •   heat transfer from the primary circuit (JNG, JNA, KAA, KAB systems are not operating),
  •   coolant inventory maintenance (JND system is not operating),
  •   the primary circuit feed (JND system is not operating). Assessment Despite the fact that no flooding threat exists for the Belarusian NPP site, the threat should be calculated carefully and renewed at least every 5 years. As mentioned above in case of flooding a lot of (safety) systems will fail.

The following question has to be answered:

Is there a new assessment of the flooding threat envisaged?

10 Loss of power supply and heat removal

In case of loss of power supply to the normal operation systems and safety systems (failure of all DGs), functioning of the normal operation systems ensuring the residual heat removal to the ultimate heat sink and cooling of the spent fuel pool stops. At the same time the active safety systems fail. (Stress Tests Report 2017, p. 87)

According to the STRESS TEST REPORT (2017, p. 87), the condition of the Unit at the initial stage of the accident is characterized by:

  1. complete unavailability of AC power supply (external and internal);
  2. availability of power supply from the EPSS UPS for some valves (isolating valves of the sealed enclosure, BRU-A, MSIV) and I&C. Power supply from the UPS is designed for 2 hours of operation without battery recharge;
  3. subcritical state of the reactor;
  4. primary circuit leaks – 2.15 m3/h, which corresponds to the maximum possible leakage during operation at the rated power;
  5. tight secondary circuit;
  6. full reserve of cooling water for the BDBA management systems in four SG PHRS (passive heat removal system) tanks;
  7. water level in the fuel pool – 8.7 m (level at fuel storage).

As a result of the blackout, the RCPS (reactor coolant pump sets) are tripped, the turbogenerator stop valves are closed, feed water supply to the steam generators is stopped, the primary circuit makeup- blow-down is tripped, the pressurizer heating elements, injection to the pressurizer, BRU-K are out of operation. As a result of the DG startup failure (initiating event), ECCS and EFWEP pumps are out of operation. Heat is removed to the ultimate heat sink – the environment – through the following chain: reactor – steam generator – SG PHRS – atmospheric air. Heat is removed to the atmosphere by evaporation of water from the SG PHRS tanks. (STRESS TESTS REPORT2017, p.88)

Removal of residual heat and cool-down of the reactor plant in the BDBA mode with blackout are performed using the system of passive heat removal through the steam generators (SG PHRS)

The system consists of four independent channels – one for each steam generator. The efficiency of one channel is 33.3%.

Putting a mobile DG set into operation to ensure water supply to the PHRS tanks and spent fuel pool (STRESS TESTS REPORT 2017, p.93)

To prevent fuel damage in the reactor in case of an accident involving the loss of all AC sources at the NPP at power operation of the reactor plant it is required to take measures not later than within 72 hours from the beginning of the accident to restore and maintain water reserve in the emergency heat removal tanks for ensuring PHRS operation (with all the emergency heat removal tanks involved).

To prevent fuel damage in the spent fuel pool in case of an accident involving the loss of all AC sources at the NPP at power operation of the reactor plant, it is necessary to supply water to the spent fuel pool at a flow rate of min. 4.5 kg/s within 89 hours.

To prevent fuel damage in the spent fuel pool in case of an accident involving the loss of all AC sources at the NPP under conditions of the complete core unloading, it is necessary to supply water to the spent fuel pool at a flow rate of min. 7 kg/s within 41 hours

In accordance with the recommendations resulting from development of the Stress Test Report (target reassessment of safety) for Belarusian NPP, two mobile DG sets (one per NPP unit) with a power of 500 kW will be provided, which presumably will be located outdoors at the NPP site.(STRESS TESTS REPORT 2017, p.93)

Within 24 hours a mobile DG set is delivered to the point of its connection and prepared for operation. According to the design documentation, the location and design of the connection points for the mobile DG set as power supplies ensures protection from flooding, extreme precipitation and other unfavorable weather conditions. (STRESS TESTS REPORT 2017, p.94)

In terms of removal of residual heat from the spent fuel pool:

  •   arrange for making-up of the spent fuel pool after 41 hours. This measure can be implemented by connecting non-standard facilities (a fire engine with a pump unit having a capacity of 40 liters/s and a head of 100 m) to two process connectors of the JNB50 system located on the outside of building UJE (at elevations +0.690 and +0.730, with water intake from LCU tanks through the pump unit of the fire engine and further through the pipelines of system JNB50, the water is supplied to the spent fuel pool) having flanges with plugs installed on them;
  •   modify the process flow diagram of JNB50 system by adding tie-in of a check-valve bypass to the make-up line for the emergency heat removal tanks. This solution will allow for making- up of the spent fuel pool by the operating personnel after 41 hours. (STRESS TESTS REPORT 2017, p.95) The passive heat removal systems SG PHRS and Containment PHRS are technical means of BDBA management.(STRESS TESTS REPORT 2017, p.97) The system of passive heat removal from the containment (JMP) reduces and maintains the pressure inside the containment within the design limits and removes the heat released under the containment in case of BDBA, including accidents with severe core damage, to the ultimate heat sink. Heat is removed to the ultimate heat sink by evaporation of water from the four emergency heat removal tanks, which are a single storage of cooling water of the SG PHRS and Containment PHRS. The tanks are reinforced concrete structures lined with stainless steel located in separate rooms of the ring structure of the reactor building, the total water volume in each of the four emergency heat removal tanks being not less than 540 m3. The capacity of the SG PHRS and Containment PHRS was selected taking into account the principle of redundancy, based on the conditions of the most probable BDBA scenarios considered in the design. Each of the systems consists of 4 channels totally independent of each other with a capacity of 4×33.3%. (Three operable channels of the SG PHRS and Containment PHRS are sufficient for the systems to perform their functions in full scope in any mode requiring their operation.) (STRESS TESTS REPORT 2017, p.97) In case of failure of all BRU-A, which is an unlikely event, SG PHRS tanks (JNB10-40) may be regarded as an additional emergency ultimate heat sink for cooling of nuclear fuel in the reactor. According to the calculations, the SG PHRS can remove residual heat of the reactor plant in the self-sufficient mode for 72 hours from the beginning of the accident, provided that the water reserves of the 4 emergency heat removal tanks are used. If 3 out of the 4 emergency heat removal tanks are used, the self-sufficient operation for not less than 24 hours is provided. Further operation of the SG PHRS is ensured by making-up of the emergency heat removal tanks with JNB50 pump from the demineralized water tanks (LCU tanks).(STRESS TESTS REPORT 2017, p.99) In accordance with the recommendations based on the results of the development of the Stress Test Report for the Belarusian nuclear power plant consisting of two power units the design shall provide two mobile DG sets (one DG set per each power unit) with a capacity of 500 kW. Within 24 hours the mobile DG set shall be delivered to the place of its connection and get ready for operation. (STRESS TESTS REPORT 2017, p.107)

Assessment

This publication20, pointed out the constraints of the capacity of the passive safety systems. It is emphasized that the analysis is is based on a “realistic” scenario, i.e.:

  •   Initial plant conditions correspond to normal operation at rated power without accounting for possible uncertainties in plant parameters.
  •   Core characteristics are assumed in accordance with the design without accounting for the calculation of uncertainties and errors.
  •   Failures of equipment (other than assumed in scenarios) and operator errors are not taken into account. The assumptions of the analysis show potential limitations of the passive safety systems, because during an accident additional equipment failures or operator errors cannot be excluded. Thus, the capability of these safety systems under real accident conditions could be limited. The is also valid for the Belarusian NPP: the seven assumptions for the situation (See STRESS TEST REPORT 2017, p. 87) before the passive systems are required seem to reflect an unrealistic situation, and not to be conservative at all. Thus, the capability of these safety systems under real accident conditions could be limited. For the Finnish NPP Hanhikivi, comprehensive design changes are made to the VVER-1200/V491 design trying to avoid total loss of power (Station Black-Out) situations. This was also required to meet the Finnish regulations as well as the current WENRA recommendations. Until now the only “improvement” for the Belarusian NPP is the use of two mobile DG.

The following questions have to be answered:

  •   Which are the most probable BDBA scenarios (Stress Tests Report 2017, p.97)? What is the meaning of “most probable” BDBA scenarios? To which quantitative value does this phrase correspond? Are there other possible BDBA scenarios?
  •   What is the probability for the failure of all BRU-A (mean value and 95% quantile)? How will it be ensured that water reserves of the 4 emergency heat removal tanks are available under severe accident conditions? What is the calculated failure probability of one or two of these tanks?
  •   Where are the mobile DG being stored?
  •   For the Finnish NPP Hanhikivi, comprehensive design changes are made in the design of the VVER1200/V491 to try to avoid total loss of power (Station Black-Out) situations. They were also required to meet the Finnish regulations as well as the current WENRA recommendations. Are there similar regulations in Belarus? Are there any design changes envisaged?
  •   Is it possible to implement the measures for the removal of residual heat from the spent fuel pool (See Stress Tests Report 2017, p.95) under severe accident conditions?

20 Bukin, N.V. et al (Gidropress): Effect of HA-2 and SPOT systems on severe accident prevention in WWER-1000/392 design; IAEA 3rd Research Coordination Meeting on Natural Circulation Phenomena; Cadarache; September 11–15, 2006

11 Severe accident management

According to STRESS TEST REPORT(2017, p. 105), destruction or failure of the containment is a serious hazard in terms of a large emission of fission substances. This radioactive emission requires immediate measures to protect the health and safety of the population and NPP personnel.

Makeup of SG PHRS tanks and the spent fuel pool is provided by a high-pressure pump of the PHRS tank makeup system. The pump unit is located in the steam chamber and connected to desalinated water tanks of system LCU.

The emergency heat removal tanks must be replenished from LCU tanks before depletion of water (72 hours from the beginning of the emergency process). After this, the SGPHRS tanks are re-emptied and the desalinized water tanks of system LCU are refilled with water. In order to further maintain the stable and safe state of the reactor plant, maintaining also operability of SG PHRS, it is necessary to be able to temporary fill makeup tanks LCU from any sources of water available at the NPP site using off-site mobile equipment (for example, from firewater storage tanks).

Supply of water for fire-fighting purposes of NPP buildings and facilities is provided by the internal and external fire-fighting water supply systems (internal and external fire water pipelines, spray pools, etc.). The NPP site has a circular network of external fire-fighting water supply, consisting of 60 fire hydrants. (STRESS TESTS REPORT 2017, p.108)

The instructions for accident mitigation and the guidelines on management of beyond design basis and severe accidents are under development.(STRESS TESTS REPORT 2017, p.116)

In order to improve measures of beyond design basis accidents management, a number of actions is recommended, for example:

  • –  organizational measures for a more effective usage of available capabilities or determination of additional measures
  • –  so-called crisis plans – their material and staff support for management of unforeseen situations, which, nevertheless, can hypothetically arise at NPP. More detailed organizational and technical measures will be considered and presented in BDBA Management Guidelines, Severe Accident Management Guidelines. (STRESS TESTS REPORT 2017, p.121) In the subchapter “Releases of Radioactive Substances in Case of Loss of the Containment Integrity” of the STRESS TESTS REPORT (2017, p. 143) it is explained, that the design provides for measures to prevent loss of the containment integrity. With additional failures in implementation of the BDBA management measures in case of a severe accident, loss of the containment integrity and localizing properties can occur due to pressure increase in the containment above 0.7 MPa, steam explosions or hydrogen explosions(with water boil-off in the spent fuel pool), which will lead to releases to the environment of a significant part of the radioactive substances accumulated in the reactor core and the spent fuel pool (probability is much lower than 10-7/year). Loss of integrity of the containment – the last protective barrier of the defense-in-depth, leads to uncontrolled propagation of radioactive substances released during the accident from the damaged fuel. As a result of such an accident, urgent measures will be required to protect the personnel and the population in the Belarusian NPP area. Further measures to eliminate the consequences of the accident are developed (STRESS TESTS REPORT 2017, p. 144) Efficiency of the measures to limit emergency releases will be confirmed within the framework of implementation of PSA-2 (based on the results of full-scale PSA-1), where the probability of large radiation releases leading to global contamination of the area around the NPP set as the target criteria is not more than 10-7 (/reactor year). (STRESS TESTS REPORT 2017, p. 144)

Contamination of vast areas with radionuclides is excluded and mandatory introduction of protective measures affecting significantly the social and economic conditions and vital activity of the population (evacuation, resettlement) is not required. Protective measures for the population are limited to temporary sheltering, preventive iodine intake and restricted of consumption of local contaminated food in the NPP surrounding area.(STRESS TESTS REPORT 2017, p. 145)

Assessment

The information provided in the STRESS TESTS REPORT (2017) leads to the conclusion that measures to cope with a loss of containment integrity do not exist (yet).

The following questions have to be answered:

  •   What is the capacity of the LCU tanks? In which frequency do they a temporary makeup from any water source? Are these water sources (e.g. the fire hydrants) protected against severe external hazards?
  •   Was the development of instructions for accident mitigation and the guidelines on management of beyond design basis and severe accidents completed? Are there any new important results?
  •   Were the detailed organizational and technical measures already considered and presented in BDBA Management Guidelines and Severe Accident Management Guidelines (See Stress Tests Report 2017, p.121)? Are there any new important results?
  •   Are any sufficient measures to cope with a loss of containment already in place?

12 Compliance with state of the art

The Western European Nuclear Regulators’ Association (WENRA) defined and expressed a common position on the safety objectives for new nuclear power plants in November 2010.21 The safety objectives were based on a report by the Reactor Harmonization Working Group of WENRA22, also considering comments received from stakeholders. The WENRA safety objectives should ensure that the NPP which will be licensed in future will fulfill higher safety standards across Europe compared to the existing plants especially through improvement of the design. The safety objectives reflect the current state of the art in nuclear safety and can be implemented in the design using the latest available technology.

Based on these safety objectives, WENRA-RHWG developed positions on selected key issues of particular relevance considering the expectations for new reactors compared to existing ones. These positions are more detailed than the safety objectives and are intended to clarify their meaning. Together with these positions, considerations concerning the major lessons learned from the Fukushima Dai-ichi accident were published in a report in 2013.23

Among other issues, the positions concern the defense-in-depth approach for new nuclear power plants. This approach was developed further, with a refined structure including introducing two sub- levels in DiD level 3: level 3a for single initiating events, level 3b for multiple failures. Also, expectations on the independence between different levels of DiD were formulated. Other positions concern the practical elimination of severe accidents with large or early releases.

The stress test report does not discuss the fulfillment of the WENRA safety objectives (SO) for new nuclear power plants. WENRA is not mentioned at all.

In an Expert Statement on the Finnish NPP Hanhikivi in 2014, the WENRA safety objectives were applied to the reactor type VVER-1200/V491.24 The following points were assessed, with a focus on design aspects:

  •   What can be asserted regarding complying with the safety objectives, on the basis of available information?
  •   Which issues remain unclear regarding compliance?
  •   Are there potential challenges which could make complying with the WENRA safety objectives difficult or impossible? Important issues of this evaluation focused on the Belarusian NPP are presented in the following section. SO 1 – Normal operation, abnormal events Objectives:

Reducing the frequencies of abnormal events by enhancing plant capability to stay within normal operation

Western European Nuclear Regulator’s Association (2010): Statement on Safety Objectives for New Nuclear Power Plants. November 2010; www.wenra.org

WENRA-RHWG–Reactor Harmonization Working Group (2009): Safety Objectives for New Power Reactors. Western European Nuclear Regulator’s Association. December 2009 (Published in the final wording in November 2010; www.wenra.org

Western European Nuclear Regulator’s Association (2013): Safety of New NPP Designs. A report by RHWG – Reactor Harmonization Working Group. March 2013; www.wenra.org www.umweltbundesamt.at/fileadmin/site/umweltthemen/umweltpolitische/ESPOOverfahren/uv p_fennovoima2014/REP_0479_Hanhikivi_EIA.pdf

 Reducing the potential for escalation to accident situations by enhancing plant capability to control abnormal events ——————————————————————————————————————————

Among the basic principles and approaches of the design, the following items are mentioned by the developer25:

  •   Improving system and equipment characteristics by abandoning excessive conservatism and optimizing design margins
  •   Reducing capital and operating expenditures It seems plausible that considerable efforts have been undertaken to improve the design of the VVER- 1200 compared to the forerunner types. However, there appears to be a challenge consisting in the potentially conflicting goals of improving safety on the one hand and improving economics on the other. Another challenge is the embrittlement behavior of the reactor pressure vessel material, given a planned service life of 50 or 60 years. In spite of extensive experiences with material behavior in the forerunner types, it appears that this is still a problem which needs monitoring. SO 2 – Accidents without core melt Objectives: Ensuring that accidents without core melt induce no off-site radiological impact or only minor radiological impact (in particular, no necessity of iodine prophylaxis, sheltering or evacuation).

Reducing, as far as reasonably achievable, o the core damage frequency taking into account all types of credible hazards and

failures and credible combinations of events; o the releases of radioactive material from all sources.

Providing due consideration to siting and design to reduce the impact of external hazards and malevolent acts.

———————————

Internal hazards

Controlling internal hazards could be a challenge as far as the safety building is concerned: The safety building’s structural elements containing the four parallel, redundant subsystems are physically separated, but placed side by side, connected by service corridors and channels for AC systems. Connections are separated by doors and dampers, calling into question the adequate realization of physical separation.

Furthermore, in the safety building each sub-system’s low- and high-head pressure injection pumps and related equipment and pipelines have been placed in the same room without physical separation.

According to the Finnish nuclear authority (STUK), Finnish safety requirements concerning protection from internal hazards, such as floods and fires, have not yet been demonstrated for the VVER 1200/491 design.26

 St. Petersburg Research and Design Institute ATOMENERGOPROEKT (2011): Design AES-2006, concept Solutions by the example of Leningrad NPP -2. Saint Petersburg, 2011

Finnish Radiation and Nuclear Safety Authority (2009): Preliminary Safety Assessment of the Loviisa 3 Nuclear Power Plant Project; Assessment Report; 2009

Multiple failures

No systematic discussion and consideration of multiple failures (level of DiD 3b, according to WENRA) could be found in the available documents.

Electrical system

AC emergency power is provided by diesel generators (4 x 100%).

Requirements and results for Core Damage Frequency (CDF)

According to the STRESS TESTS REPORT (2017, p. 40), to assess the Belarusian NPP safety, a probabilistic safety analysis (PSA) of the 1st and 2nd level is applied. For the Belarusian NPP, comprehensive PSA-1 (for internal initiating events, internal fires and flooding, seismic PSA and PSA for external impacts) and comprehensive PSA-2 based on PSA-1 are developed.

The average value of frequency of nuclear fuel damage in the reactor obtained from PSA-1 for internal initiating events is as follows:

  •   at power operation: 7.7×10-7 /year;
  •   in standby modes: 2.42×10-7 /year. The average value of total frequency of nuclear fuel damage in the spent fuel pool is as follows:
  •   at power operation: 3.32×10-10 /year;
  •   in standby modes: 3.19×10-8 /year. Assessment The published results of PSA/PRA27 studies seem to confirm that the limit of 10E-6/year for the core damage frequency is exceeded. External effects are not included yet. Furthermore only an average value was given plus no information on the uncertainty of the results. The published values suggest that at least the 95%-quantile of the CDF could be considerably higher than the limit, even if only the factors which can be included in a PSA/PRA are taken into account. Regarding core damage frequency, average values are reported for the Belarusian NPP without any indication as to the uncertainty of these values. It is commendable if quantile values are specified additionally to the mean or median values, to provide some indication of the uncertainty involved in the probabilistic analysis. However, it should be noted that not all uncertainties of a PSA/PRA can be quantified, and furthermore, that there are factors (for example safety culture, malicious human acts, and ageing phenomena) which cannot be taken into account in a PSA/PRA, or can be taken into account only in an insufficient manner. Therefore, PSA/PRAs provide interesting indicators for plant hazards, but the numerical results cannot be taken at face value and should not be interpreted as reliable absolute measures for the frequency of severe accidents and large releases. The value of PSA/PRA results when discussing different plant types is thus limited. From the overview on all the information from Belarus and from EIA reports of Russian NPPs it is clear that there is a cut-off value for the probability of severe accidents: Only beyond design basis accidents are considered with a probability of occurrence > 10-7 per reactor and year (the limit for the probability of a core damage accident is 10-6/yr). Accidents with a risk < 10-7 per reactor and year are classified as practically impossible. In the opinion of Austrian experts. such accidents are not to be

27 PSA – Probabilistic Safety Analysis; PRA – Probabilistic Risk Analysis. These two terms are used interchangable. Because the analysis does not give conclusions about safety (the lack of risk) but rather the risk itself, we prefer using the term PRA.

25

excluded in principle. Due to the limits and shortcomings of probabilistic analyses, accidents should not be excluded from consideration on the basis of probabilistic arguments alone.28

Most importantly: the numerical results of PRA studies should not be taken at face value. PRAs are beset with uncertainties, and cannot completely capture reality. The following factors cannot be taken into account in a PRA at all or not adequately: unexpected loads from internal events, low safety culture, ageing-related common cause failures, problems at the interface between civil engineering and systems engineering, unexpected external events and acts of terror and sabotage.

The following questions have to be answered:

  •   Which uncertainty is associated with the PSA/PRA results? In particular, can the 95% quantiles of CDF and LRF be provided and conclusions drawn from those?
  •   Are results available from preliminary safety reports of the NPPs Leningrad 2 under construction? Does a level 2 PSA/PRA exist for these reactors? Similar for the Hanhikivi NPP.
  •   Are the functioning and reliability of passive safety systems and features demonstrated?
  •   Which BDBA scenarios have been analyzed?
  •   Are there any plans to include the WENRA recommendations in the regulations of Belarus?
  •   Is there any conflict between safety and economics regarding the goals of larger operational margins for reducing the frequency of abnormal events and reducing capital and operating expenditures?
  •   How will the embrittlement behavior of reactor pressure vessels be monitored?
  •   What are the measures to avoid mistakes by manufacture?
  •   Are internal hazards being systematically analyzed and controlled?
  •   Are multiple failures being systematically analyzed and controlled?

SO 3 – Accidents with core melt (DiD level 4)

Objectives:

Reducing the potential of radioactive releases to the environment from accidents with core melt, also in the long term, by following the qualitative criteria below:

Accidents with core melt which would lead to early or large releases have to be practically eliminated.

For accidents with core melt that have not been practically eliminated, design provisions have to be taken so that only limited protective measures in area and time are needed for the public (no permanent relocation, no need for emergency evacuation outside the immediate vicinity of the plant, limited sheltering, no long term restrictions in food consumption) and that sufficient time is available to implement these measures.

—————————————————————————————————

Containment integrity

According to the STRESS TESTS REPORT (2017, p. 127), there are several potential hazards leading to the containment destruction by high pressure: steam explosions at the in- and ex-vessel stage of the severe accident; loading of the containment due to mass and energy release at the in- and ex-vessel stage of the severe accident.  http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0291.pdf

The main threat from the containment destruction and failure is high release of the fission products. High release of the fission products requires immediate actions to ensure health protection and safety of the population and NPP personnel.

A steam explosion within the reactor vessel can result in damaging the containment through its penetration with flying objects, which may be classified as an early radioactive emission to the atmosphere. A steam explosion hazard may arise as a result of core degradation due to interaction of heated fuel fragments and coolant residues in the reactor vessel. (STRESS TESTS REPORT 2017, p. 127)

The design and organizational measures adopted in the design are aimed at minimizing the possibility of intensive interaction of the molten core material with water and preventing the possibility of the molten material dispersion after it comes out of the reactor vessel.

The minimization of the intensive interaction arising from the contact of the molten core material with water is achieved by the design features of the reactor vessel and the prohibition for water supply to the core when the onset of the accident severe phase is diagnosed.

To prevent ex-vessel steam explosions, no water shall be present inside the molten core catcher when the first portions of the molten core material enter the catcher. This is ensured by the design of the safety membrane on the vessel of the molten core catcher. (STRESS TESTS REPORT 2017, p. 127)

The results of the design analysis have shown that the absolute pressure in the containment does not exceed 0.5 MPa, which corresponds to the maximum permissible pressure for the containment under severe accident conditions. (STRESS TEST REPORT 2017, p.127)

In case of beyond design basis accidents the design provides for application of special instrumentation and implementation of organizational measures. The containment integrity during BDBA is monitored from the MCR. The information from the instruments characterizing the containment integrity is displayed by the indicating instruments of the segmented panel CWL01, which is located in the MCR. There is no such panel in the ECR. (STRESS TESTS REPORT 2017, p. 137)

There are 44 re-combiners in the containment rooms. In order to ensure maximum efficiency of the system, the re-combiners are installed in places where the hydrogen concentration during the accident can reach maximum values, as well as on the ways of the steam-gas medium movement. (STRESS TESTS REPORT 2017, p.138)

The containment integrity can be assessed through radiation monitoring at site. If the radiation background exceeds the design values, it is assumed that a threat to the containment integrity is created or implemented, and this threat requires immediate measures to limit the release and propagation of the fission products at site. (STRESS TESTS REPORT 2017, p.142)

Assessment

According to the developer, physical phenomena related to severe accidents that might endanger the containment integrity are avoided as per the NPP design, namely29:

  •   Steam explosion in the reactor pressure vessel
  •   Hydrogen detonation
  •   Re-criticality of the core or the core melt
  •   Steam explosion beyond the reactor pressure vessel
  •   Direct heating of the containment
  •   Missiles St. Petersburg Research and Design Institute ATOMENERGOPROEKT (2011): Design AES-2006, concept solutions by the example of Leningrad NPP -2. Saint Petersburg, 2011

Interaction between the melt and the under-reactor compartment floor and walls

It can be assumed that the formulation “avoided as per the NPP design” means that these phenomena do not have to be considered further; i.e., that they are practically eliminated by design measures.

It appears that a number of physical phenomena which could lead to large and/or early releases in case of a severe accident are regarded as practically eliminated by the designers of VVER-1200/V491. However, the concept of practical elimination is not explicitly addressed in the documents at hand.

The concept of practical elimination has been introduced by IAEA. An accident sequence can be considered to have been practically eliminated if it is physically impossible for the sequence to occur, or if the sequence can be considered with a high degree of confidence to be extremely unlikely to occur.30

In the above-mentioned report on safety expectations for the design of new NPPs, the Reactor Harmonization Working Group of WENRA has elaborated this concept, discussing among other issues means for practical elimination, and the demonstration of practical elimination. In this report, it is stated that in order to increase the robustness of a plant’s safety case, demonstration should preferably rely on physical impossibility. In any case, practical elimination cannot be claimed solely based on compliance with a probabilistic cut-off value. Analyses need to be supported by adequate experimental results. Uncertainties have to be taken into account, and sensitivity studies performed. All codes and calculations must be validated against the specific phenomena in question, and verified. Also, it must be ensured that the relevant provisions remain in place and valid throughout the lifetime of the plant.

It could be a challenge to demonstrate practical elimination for the Belarusian NPP for all phenomena in question, taking into account these principles. According to the available information it is not assured yet.31

The following questions have to be answered:

  •   Has the practical elimination for steam explosion in the reactor pressure vessel, hydrogen detonation and other phenomena been demonstrated?
  •   What concept of practical elimination was applied? Is the concept of practical elimination of WENRA applied?
  •   Where will the containment integrity during BDBA be monitored in case the MCR is not available?

Core catcher

The most conservative scenario in terms of the early destruction of the reactor vessel is „Double- ended break of the reactor coolant circuit (DN 850) with failure of the ECCS active part“. For this scenario, the time of the core top uncovering is 860 sec., the time of the reactor vessel destruction and release of the first portion of the molten core material into the molten core catcher is 6330 sec. Thus, the time reserve from the moment of the core top uncovering till the molten core material release beyond the reactor vessel is 5470 sec. (See STRESS TESTS REPORT 2017, p.125)

International Atomic Energy Agency (2012): Safety of Nuclear Power Plants: Design. IAEA Safety Standards Series No. SSR – 2/1. Vienna, 2012    www.umweltbundesamt.at/fileadmin/site/umweltthemen/umweltpolitische/ESPOOverfahren/uvp_fennovoima2014/REP_0479_Hanhikivi_EIA.pdf

The vertical section of the passive water supply valve is located in a cylindrical channel with cooling water from the shaft of the molten core catcher. The passive water supply valve is located below the minimum water level in the concrete reactor cavity, which ensures reliable cooling water supply to the surface of the molten core material after its actuation.

The calculation results show that at a present melting temperature of the valve solder plug, water is supplied to the melt mirror under the following conditions, when 90% of the molten core material have entered the molten core catcher. (See STRESS TESTS REPORT 2017, p.136)

Assessment

An important feature of the AES-2006 is the core melt localization device (or core catcher). If functioning as planned, this new feature would have the potential to reduce the probability of large releases in case of a severe accident. However, the functioning of a core catcher is beset with a number of problems which have not been sufficiently clarified (for example: interaction between the molten core and concrete, considerable uncertainties regarding heat transfer between the materials involved; occurrence of cracks in the concrete of the device; hydrogen formation).

The core catcher of the VVER-1000/V466, which can be assumed to be similar to that of the VVER- 1200, is placed in a concrete shaft below the reactor pressure vessel. It is filled with sacrificial material. The molten reactor core falls into this device after it has penetrated the pressure vessel bottom, and is cooled from above with water. The water from a building sump and the fuel pool is destined for this task.

The steam explosions constitute a severe problem for the core catcher design selected for the VVER- 1000/V466. It is not guaranteed that the molten core will reach the core catcher all at once, as a whole. If, at first, only a part gets into the concrete shaft, it is likely that this will trigger flooding. Further molten core material then falls into water and the melt can fragment into small particles. In this way, heat transfer to the water is very fast, with abrupt vaporization as a result. For those steam explosions it is not possible today to predict the level of potential damage.

The core catcher is characterized by complex chemical reactions as well as complex physical processes. Adequate confirmation of the functioning by experiments and analysis thus constitutes significant challenges. Not least among those is the demonstration of transferability from experiment to the real component in the plant, i.e. the transferability from experiments with induction heated, small amounts of melts to a situation with a molten core.

There are open questions regarding the reliable functioning of the “core catcher” regarding the description of accident scenarios, timing of core flooding to avoid steam explosion etc. The proof of functioning of this device (test, computer simulations), including the prevention of steam explosions, shall be answered.

The basic design of the core catcher is beset with a fundamental disadvantage – the molten core stays in a very compact form, which results in an unfavourable surface-to-volume ratio for cooling. It is not foreseeable that the disadvantage outlined above will be remedied since this would require far- reaching changes in the reactor design.32

According to the description of the core catcher in the STRESS TESTS REPORT (2017) of the Belarusian NPP the above mentioned problems are not solved.

The following question has to be answered:

Is the functioning of the core catcher confirmed with experiments and analysis?

http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0291.pdf

Filtered venting system

A filtered containment venting system is not included in the AES-2006 design. It has to be mentioned that the Finnish requirements call for nuclear power plants to be equipped with a filtered containment venting system to mitigate the consequences of severe accidents.

Limit for large radioactive release

The published results of PSA/PRA studies appear to confirm that the limit of 10-7/yr for the large release frequency is not exceeded; they lay well below this limit (1.8 . 10-8/yr). However, this value includes full-power operation and internal initiating events only. Low-power and shutdown states considerably contribute to CDF. The contribution of external events can also be significant, depending on the site.

There is no information concerning the uncertainty of the value given for LRF; it is not clear whether it refers to the mean or the median value. All in all, it is not clear from the PSA/PRA results whether the limit for LRF could not in fact be exceeded, even if only the factors which can be included in a PSA/PRA are taken into account.

WSO 4 – Independence of levels of DiD (DiD levels 1 – 4)

Objectives:

Enhancing the effectiveness of the independence between all levels of defense-in-depth, in particular through diversity provisions (in addition to the strengthening of each of these levels separately as addressed in the previous three objectives), to provide as far as reasonably achievable an overall reinforcement of defense-in-depth.

——————————

According to the STRESS TESTS REPORT (2017, p.123), to manage severe accidents, the design provides for a set of technical and organizational measures aimed at transferring the NPP to a controlled state. The means applied are, as far as possible, independent of the means applied at levels 1-3 of the defense-in-depth.

Assessment:

The independence of the levels of DiD is an important and fundamental element of the defense-in- depth concept. WENRA expects independence between different levels of DiD to the extent reasonably practicable, so that failure of one level of DiD does not impair the defense in depth ensured by the other levels. The adequacy of the achieved independence shall be justified by deterministic and probabilistic risk analysis, and engineering judgment. Appropriate attention shall be paid to the design of I&C and other cross-cutting systems. The design of these systems shall be such as not to unduly compromise the independence of the SSCs they support.

However, the design of the VVER-1200/V491 appears to understand the concept of defense-in-depth as a generally underlying philosophy and not as a principle to be consistently followed through the

The following questions have to be answered:

  •   What is the reason that a filtered venting system will not be implemented?
  •   Will Belarus follow the Finnish requirements?

whole design. The importance of independence of the levels of DiD is emphasized in a general manner, but is not consistently realized in the details of the design.

Furthermore, there is a number of features provided for severe accidents (DiD level 4) which are also used on lower levels of DiD: The two passive heat removal systems are not for exclusive use in case of a severe accident; they are also to be employed at safety level 3. Also, there is only one set of valves for primary circuit depressurization for DiD levels 3 and 4. Primary depressurization is highly important for severe accident management, to avoid core melt at high primary pressure with high pressure melt ejection and possible containment damage. It has to be noted that Finnish safety requirements are not met, because of the call for independence of primary circuit depressurization during severe accidents from the systems designed for the plant’s operating stages and postulated accidents.

Also, separation of I&C systems supporting different levels of defense-in-depth has not been clarified in the available documents.33

The following questions have to be answered:

  •   For which systems was the independence between levels of defense-in-depth, to the extent reasonably practicable, not implemented – in particular regarding levels of DiD 3 (with sub- levels 3a and 3b) and 4
  •   To which degree was the separation of I&C-systems supporting different levels of defense-in- depth realized?
  •   Are there any improvements envisaged concerning the independence of the DiD levels?

 www.umweltbundesamt.at/fileadmin/site/umweltthemen/umweltpolitische/ESPOOverfahren/uv p_fennovoima2014/REP_0479_Hanhikivi_EIA.pdf

13 Severe accident consequences

Safety Analysis Report on the Belarusian NPP shows that concerning implementation of the above measures for BDBA management with the containment integrity maintained, severe accident radiation effects do not exceed level 5 of the INES scale: The estimated release to the environment is as follows: iodine-131: 100 TBq; cesium-137: 10 TBq. (STRESS TESTS REPORT 2017, p.143)

Assessment

Even if the probability for Beyond Design Basis Accidents (BDBA) is very low, they should be assessed. For the assessment of a potential risk the evaluation of possibly severe accidents including the maximum source term are of the highest interest.

In 2012, the Norwegian Radiation Protection Authority published a report concerning the potential consequences in Norway after a hypothetical accident at the NPP Leningrad II (Russia).34 The calculation was based on the most serious radiological consequences that could occur after a ‘credible’ accident in a VVER-1200 (AES-2006/V491). The definition of the release categories and the associated source term data were based on simulations conducted as a part of Level 2 PSA for a VVER-1000/V320 plant. The radionuclide inventory of the core was based on Russian data derived for the original Soviet fuel. The source term was calculated to 2800 TBq Cs-137.

Based on guidance RG 1.109, RG 1.111 published by United States Nuclear Regulatory Commission (USNRC) Nguyen Tuan Khai and Le Dinh Cuong of the Institute for Nuclear Science and Technology (INST) concentrate on assessing radiation doses caused by radioactive substances released from the NinhThuan 1 nuclear power plant (NPP) to the environment. The Ninh Thuan 1 NPP is assumed to use the VVER-1200 technology. The input data for the model calculations are built based on the accident scenario and the technical parameters of VVER-1200 technology. The magnitude of the accident was evaluated at level 7 which is the highest on the International Nuclear Event Scale (INES). The scenario of the accident was based on two incidents: Station Black Out (SBO) and Loss of Coolant Accident (LOCA). The latter is induced by a large break in the Reactor Coolant System (RCS). The accident leads to severe consequences, starting with the damage of the reactor core to containment failure and eventually the release of radioactive substances to the environment. For the NPP accident scenario the RASCAL4.3 calculations give two main results: (1) the source term for radioactive nuclides released to the atmosphere, and (2) maximum dose distribution (mSv) up to 80 km. The calculation results show that consequences of the accident are very serious. In total the radioactivity of a radiological equivalence of 225,000 TBq of 131I is released to the atmosphere. Within 20 km the Total Effective Dose Equivalence (TEDE) values are very high, about several ten times higher than the dose limit. It is requested to establish a National Steering Board for Accident Response to direct the relevant authorities in response for the accident consequences and ensure security in the area of NPP.35

It is unjustified to exclude accidents in the Belarusian NPP from further consideration solely on the basis of PSA/PRA results. Taking into account the open issues and challenges identified regarding the safety of this reactor type, and in particular the lack of evidence that accidents with large releases are extremely unlikely with a high degree of confidence, severe accidents with large releases cannot be excluded for the VVER-1200/V491 based on information available today. According to evaluations of Statens strålevern: Potential consequences in Norway after a hypothetical accident at Leningrad nuclear power plant; Potential release, fallout and predicted impacts on the environment; Norwegian Radiation Protection Authority; June 2012

Assessment of Radioactive Gaseous Effluent released from NINH THUAN 1 Nuclear power plant under Scenario INES-Level-7 Nuclear accident; Nguyen Tuan Khai, Le Dinh Cuong; Institute for Nuclear Science and Technology (INST), Communications in Physics, Vol. 25, No. 4 (2015), pp. 375- 382 the chosen reactor type VVER-1200/V491 it has to be stated that severe accidents with large releases cannot be excluded.

Moreover, the stress test does consider the risk and potential impacts of sabotage, terrorist attack and acts of war.

To estimate the possible consequences of a severe accident at the Belarusian NPP the results of the research project flexRISK could be used.36

Additional information is necessary to evaluate the possible consequences of a severe accident.

The following questions have to be answered:

  •   Why are higher source terms not presented in the Stress Tests Report?
  •   Which source terms have to be associated with the worst- case scenarios for the Belarusian NPP?
  •   What are the justifications for the source term used in the Stress Test Report?
  •   What are the results of PSA/PRA (Level 1 and 2) in particular the probabilities/frequency of core damages (CDF) and severe accidents with (early) large releases (LRF and LERF) including probability distribution (quantiles) and source terms for the most important release categories?

36 FLEXRISK (2013): The Project “flexRISK“: Flexible Tools for Assessment of Nuclear Risk in Europe; http://flexrisk.boku.ac.at/en/projekt.htm

Show less


KOSTENSTUDIE   Handelszeitung.ch  

AKW-Stilllegung kostet über 23 Milliarden Franken

Die Stilllegung der Schweizer Atomkraftwerke wird laut einer Studie teurer als bisher angenommen.

Tscherenkow-Leuchten im Abkühlbecken von Mühleberg: Der Rückbau der AKW wird teuer.
Quelle: Keystone

Die Stilllegung der AKW und die Entsorgung radioaktiver Abfälle dürfte erneut teurer werden als bisher berechnet. Unabhängige Experten haben die aktuellste Kostenstudie überprüft und kommen zum Schluss: Die Kosten betragen rund 23,5 Milliarden Franken.

Ursprünglich war die sogenannte Kostenstudie 2016 von 22,8 Milliarden Franken ausgegangen. Sie ist von Swissnuclear im Auftrag der Kommission für den Stilllegungsfonds und den Entsorgungsfonds (Stenfo) durchgeführt und vor rund einem Jahr publiziert worden.

Hoher Sicherheitszuschlag

Nun haben unabhängige Experten die Studie in den vergangenen Monaten überprüft, wie Stenfo am Donnerstag mitteilte. Dazu haben sie die Studie mit den Stilllegungs- und Entsorgungskosten ausländischer AKW verglichen und vor allem auf den Sicherheitszuschlag fokussiert.

Unter anderem empfehlen sie im Bereich Stilllegung, höhere Risikozuschläge einzusetzen. Auch für die Entsorgung schlagen die Experten Anpassungen der Zuschläge für Gefahren und Chancen vor.

23,5 Milliarden Franken

Insgesamt rechnen die Experten mit Gesamtkosten von 23,484 Milliarden Franken. Für diesen Betrag hat Stenfo dem Umweltdepartement Uvek einen Antrag gestellt. Das Uvek dürfte in den kommenden Monaten über die Höhe der Kosten entscheiden.

An der ungeprüften Kostenstudie 2016 hatte die Schweizerische Energiestiftung Kritik im Mai Kritik geübt. Sie bezeichnete die Studie als zu optimistisch und forderte höhere Beiträge. https://www.handelszeitung.ch/politik/kostenstudie-akw-stilllegung-kostet-uber-23-milliarden-franken

(sda/gku/mbü)  

 


We must ramp up protest if we are to avoid nuclear war

Zoe Williams’ article (No more nukes? Why anti-nuclear protests need an urgent revival, 7 September) is a timely and thoughtful reminder of why civil society must respond to the present US-North Korea nuclear crisis if we are to avert catastrophe. Protesters clashed with police in Seoul on Thursday while demonstrating against the deployment and expansion of the US Terminal High-Altitude Area Defence (Thaad) missile-defence system. The South Korean protesters realise what many of our leaders don’t: deploying more weapons, conducting more military drills, and intensifying the war of words could soon tip the balance in favour of a real nuclear war that would kill millions. There will be no winners, whatever Donald Trump might imagine.

Last year, here in Britain, CND led a demonstration of over 60,000 against the replacement of Trident, our own nuclear weapons system. We were joined by Labour leader Jeremy Corbyn, Scottish first minister Nicola Sturgeon, as well as trade unionists and representatives of faith groups and civil society organisations. That demonstration argued what should now be clear to all: nuclear weapons are no deterrent. Trident does nothing to protect us on the brink of nuclear war: on the contrary it will make us a target.

From the early CND demonstrations onwards, we called on our leaders to ban the bomb. This year, that demand has culminated in 122 countries negotiating a legally binding nuclear ban treaty at the United Nations. It opens for signature on the 20th of this month. Britain must join them, rule out joining military exercises on the Korean peninsula, and support calls for the resumption of the six-party talks. The demands of our demands movement are not naive, utopian slogans. They are urgent and necessary actions that our politicians must heed if our species is to survive. They are needed now more than ever, and the more of us that make that case to our leaders, the better chance we have of securing a future for ourselves and the generations to come.


Hinkley Point C – Military secrets of our nuclear power plants

I have dug up considerable evidence that demonstrates this beyond any doubt. The first public hint came with an announcement on 17 June 1958 by the Ministry of Defence, on “the production of plutonium suitable for weapons in the new [nuclear] power stations programme as an insurance against future defence needs”.

And that is exactly what they did. The nuclear world has thus turned full circle, as the atomic conjoined twins that had been painfully separated for nearly 50 years are being rejoined in an insidious way by this new Conservative government.
Dr David Lowry
Senior research fellow, Institute for Resource and Security Studies


 

https://www.theguardian.com/uk-news/2017/dec/27/military-secrets-of-our-nuclear-power-plants

Zoe Williams’ article (No more nukes? Why anti-nuclear protests need an urgent revival, 7 September) is a timely and thoughtful reminder of why civil society must respond to the present US-North Korea nuclear crisis if we are to avert catastrophe. Protesters clashed with police in Seoul on Thursday while demonstrating against the deployment and expansion of the US Terminal High-Altitude Area Defence (Thaad) missile-defence system. The South Korean protesters realise what many of our leaders don’t: deploying more weapons, conducting more military drills, and intensifying the war of words could soon tip the balance in favour of a real nuclear war that would kill millions. There will be no winners, whatever Donald Trump might imagine.

From the early CND demonstrations onwards, we called on our leaders to ban the bomb. This year, that demand has culminated in 122 countries negotiating a legally binding nuclear ban treaty at the United Nations. It opens for signature on the 20th of this month. Britain must join them, rule out joining military exercises on the Korean peninsula, and support calls for the resumption of the six-party talks. The demands of our demands movement are not naive, utopian slogans. They are urgent and necessary actions that our politicians must heed if our species is to survive. They are needed now more than ever, and the more of us that make that case to our leaders, the better chance we have of securing a future for ourselves and the generations to come.

In her excellent article on the Hinkley C nuclear plant financial fiasco (The long read, 21 December), Holly Watt mentions the innovative insight of Sussex University academics Prof Andy Stirling and Dr Phil Johnstone, who have identified the central importance of expansion of the skill base of the new nuclear build programme – headed by Hinkley C – for the Trident military nuclear renewal programme. Watt also mentions the first nuclear plant built on the same site, Hinkley A. What is barely acknowledged about this reactor is it was both built and operated to manufacture plutonium for British nuclear warheads, and probably some plutonium it created was sent to the US for use in its military stockpile too.

I have dug up considerable evidence that demonstrates this beyond any doubt. The first public hint came with an announcement on 17 June 1958 by the Ministry of Defence, on “the production of plutonium suitable for weapons in the new [nuclear] power stations programme as an insurance against future defence needs”.

The Conservative government’s paymaster general, Reginald Maudling, told parliament a week later: “At the request of the government, the Central Electricity Generating Board has agreed to a small modification in the design of Hinkley Point … so as to enable plutonium suitable for military purposes to be extracted should the need arise. The government made this request in order to provide the country, at comparatively small cost, with a most valuable insurance against possible future defence requirements.”

Dr David Lowry
Senior research fellow, Institute for Resource and Security Studies


Chutka Nuclear Power Plan From Wikipedia, the free encyclopedia

The Chutka Nuclear Power Plant is a proposed nuclear power plant to be built on a 1,200 acres (490 ha) area, near Chutka Village of Mandla district of Madhya Pradesh.[1][2] The site is near Kanha National Park, one of the tiger reserves of India and the largest national park of Madhya Pradesh state in India.

The project will have an installed capacity of 1400 Megawatt. 

Location of Chutka Nuclear Power Plant in Madhya Pradesh

Chutka Nuclear Power Plant
Country India
Location Chutka Village, Mandla districtMadhya Pradesh
Coordinates 22°46′50″N 80°05′23″ECoordinates22°46′50″N 80°05′23″E
Status Proposed
Construction cost ₹17,000 crore(US$2.65 billion)
Owner(s) Nuclear Power Corporation of India
Nuclear power station
Reactor type PHWR
Cooling source Narmada River
Power generation
Units planned 2 x 700 MW

Tschechien hält an Ausbau von Atomenergie-Infrastruktur fest

Das Regierungsprogramm von Babis sieht den Bau neuer Reaktorblöcke und Tiefenlager für Atommüll vor.

35 Prozent Atomenergie

Die jüngsten Überlegungen über den Ausbau der Energieindustrie haben sich auf das südmährische Atomkraftwerk Dukovany, wo über den Bau von mindestens einem zusätzlichen Block die Rede ist, konzentriert. Der Anteil von Atomenergie an der Stromproduktion in Tschechien liegt bei rund 35 Prozent. Als Hauptquelle bleibt mit 47,5 Prozent noch die heimische Braunkohle.


Russlands AtomkatastropheAuf den Spuren des vertuschten GAUs von Majak

Russlands Atomkatastrophe

Auf den Spuren des vertuschten GAUs von Majak

Seit zwei Jahren lebt die russische Umweltaktivistin Nadeschda Kutepowa in Paris. Sie musste aus Russland flüchten, weil sie sich dort für die Schließung der atomaren Wiederaufbereitungsanlage „Majak“ im Süd-Ural eingesetzt hatte. In der geheimen Anlage war 1957 ein Atommüll-Lager explodiert. Die Sowjetführung verschwieg den Unfall. Die Anlage ist auch heute noch in Betrieb …

https://www.arte.tv/de/videos/072489-015-A/re-russlands-atomkatastrophe/

Verfügbar: vom 20. Dezember 2017 bis zum 19. Januar 2018


#MARKET NEWS

DECEMBER 15, 2017 / 1:53 PM / 3 DAYS AGO

MEDIA-EDF says no new nuclear reactors in France without state support-Ouest France

Reuters Staff

 ** French state-controlled utility EDF’s CEO Jean-Bernard Levy tells Ouest France daily that EDF can no longer build new nuclear reactors in France without state support.

** Asked when EDF could build new reactors at home, Levy says “Henceforth, we cannot build new reactors without adequate regulation providing guaranteed income”. He said that Flamanville was launched at a time of high power prices and that now all power sources, nuclear as well as renewable, need to get the same visibility on sales prices.

** For its project to build two EPRs in Hinkley Point, Britain, EDF has obtained an EU-approved state-guaranteed price of 92.5 pounds per megawatt-hour over 35 years, which is way above current market prices.

** The centrist government of French President Emmanuel Macron is not talking about building new nuclear reactors, but about closing old reactors in order to reduce the share of nuclear energy in French power generation to 50 percent by around 2035 from 75 percent today.

** Asked when the first Areva-designed EPR reactor could start up, Levy said ”that should be in a few weeks in China. The start-up will be gradual, to make sure everything works well.

** Levy said EDF expects to get approval to charge nuclear fuel in its Flamanville reactor at the end of 2018. He said that once operational, Flamanville will be a good showcase to sell nuclear reactors in Asia.

Note: Reuters has not verified this story and does not vouch for its accuracy

Reporting by Geert de Clercq, Editing Dominique Vidalon

06.12.2017 09:43

Mainzer Physiker schlagen neue Methode zur Überwachung von Atommüll vor

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

Wissenschaftler zeigen Szenarien zur Nutzung von Neutrinodetektoren in atomaren Zwischenlagern auf

Um radioaktives Material in Atommülllagern besser zu überwachen und sicherer aufzubewahren, könnten nach neuen wissenschaftlichen Erkenntnissen Neutrinodetektoren einen wichtigen Beitrag leisten. Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben die von abgebrannten Kernbrennstoffen ausgehende Neutrinostrahlung ermittelt. Anhand dieser Berechnungen können sie zeigen, dass der Einsatz von Neutrinodetektoren in bestimmten Szenarien hilfreich wäre.

https://idw-online.de/de/news685951


Dienstag, 12. Dezember 2017 – 11:48

Bilder aus der Todeszone um Tschernobyl

Red. / 11. Dez 2017 – 50’000 Menschen lebten einst in der Stadt Pripjat, nicht weit vom Reaktor Tschernobyl entfernt. Heute ist es eine Geisterstadt.

Um Tschernobyl ist es ruhig geworden. Doch auch drei Jahrzehnte nach der Katastrophe leidet die Bevölkerung in den am stärksten betroffenen Gebieten der Ukraine, Weissrusslands und Russlands unter den Folgen des Atomunfalls. In der Reportage «Tschernobyl ist nicht vorbei, es fängt erst an» berichtete Urs Fitze im April 2016 auf Infosperber vom Leben, von den Sorgen und Hoffnungen der Menschen im verstrahlten Gebiet.

Vor Kurzem besuchte der heute pensionierte, langjährige Leiter Kommunikation und Kultur der Migros Aare, Thomas Bornhauser, mit seiner Kamera das Atomkraftwerk Tschernobyl und die Geisterstadt Pripjat, rund vier Kilometer vom Reaktor entfernt. Nach der Atomkatastrophe wurde Pripjat grossflächig evakuiert, wegen der spärlichen Informationspolitik der Sowjetunion allerdings erst nach 36 Stunden. Seitdem verfällt die Stadt, Plünderungen und Vandalismus haben ihre Spuren hinterlassen. Hier einige Bilder aus der Geisterstadt:

https://www.infosperber.ch/Artikel/Umwelt/Bilder-aus-Tschernobyl


Strahlender Advent – Heutige Leerfahrt ist Auftakt des 5. Neckar-Castors

Bündnis Neckar castorfrei
www.Neckar-castorfrei.de

Pressemitteilung 10.12.2017

Neckar_castorfrei_1216_V4d

Auch der 5. Transport von Obrigheimer Castoren ist unnötig und gefährlich – Atommüll-Problem verschärft statt verbessert


Power from mini nuclear plants would cost more than from large ones‘

UK government study finds electricity would be nearly one-third pricier than it would from plants such as Hinkley Point

Hinkley Point C nuclear power station in Somerset
An overview of construction of the Hinkley Point C nuclear power station, a large atomic plant, in Somerset. Photograph: EDF Energy/PA       

Power from small modular reactors (SMRs) would cost nearly one-third more than conventional large ones in 2031, the report found, because of reduced economies of scale and the costs of deploying first-of-a-kind technology.

The analysis by the consultancy Atkins for the Department for Business, Energyand Industrial Strategy said there was “a great deal of uncertainty with regards to the economics” of the smaller reactors.

https://www.theguardian.com/environment/2017/dec/07/power-mini-nuclear-plants-cost-more-hinkley-point-c


Don’t Nuke Narmada: Statement in Solidarity with Chutka Struggle [Please Sign and Share]

DECEMBER 11, 2017

Dear friends,
The resilient and courageous people of Chutka, who have been fighting a relentless battle against the nuclear project in their vicinity, which will displace them once again after the Bargi dam on Narmada, and endanger their safety, are organising a big rally on December 12th. This will mark the culmination of the 2 month long grassroots campaign that they started on 2nd October. You can see more details about this campaign here.

We request you to sign the appeal given below and circulate widely on your social media. Friends in Chutka will read out this letter in the big rally at the district headquarter on Tuesday.

Endorsements can also be sent directly to editor@dianuke.org  In solidarity,

http://www.dianuke.org/dont-nuke-narmada-statement-solidarity-chutka-struggle-please-sign-share/


New nuclear power cannot rival windfarms on price, energy boss says

Innogy Renewables chief claims future reactors will not be competitive as offshore windfarms become even cheaper

Wind turbines off the coast of Kent
Wind turbines off the Kent coast. Bigger turbines will drive down costs in future, said Bunting. Photograph: Chris Laurens/Getty Images/VisitBritain RM

Russian nuclear facility denies it is source of high radioactivity levels

Greenpeace calls for investigation after levels of ruthenium-106 in atmosphere near Urals site found to be 986 times norm

Russian radioactive label
Nuclear experts have said there was no evidence to suggest the leak posed a significant hazard to human health or the environment. Photograph: Martin Argles for the Guardian

Greenpeace has called for an investigation into a potential cover-up of a nuclear accident after Russia’s nuclear agency had denied European reports of increased ruthenium-106 levels. Rosgidromet, the weather monitoring service, released test data on Monday that showed levels were indeed much higher than normal. The most potent site was Argayash in the south Urals, where levels were 986 times the norm.

Argayash is about 20 miles from Mayak, a facility that reprocesses spent nuclear fuel. The plant facility issued a denial on Tuesday. “The contamination of the atmosphere with ruthenium-106 isotope registered by Rosgidromet is not linked to the activity of Mayak,” a statement said.

It went on to reassure people that the measurements were well below dangerous levels: “The measurements which Rosgidromet has released suggest that the dose people might have received is 20,000 times less than the allowed annual dose and presents no threat at all to health.”

Russian workers process spent fuel from nuclear submarines at a facility in Severodvinsk.
Russian workers process spent fuel from nuclear submarines at a facility in Severodvinsk. Photograph: Sergei Karpukhin/Reuters

Nuclear experts also said there was no evidence to suggest the leak posed a significant hazard to human health or the environment.

A report this month from France’s Institute for Radioprotection and Nuclear Safety (IRSN) said ruthenium-106 had been detected in France between 27 September and 13 October.

weiterlesen: http://Russian radiation leak: everything you need to know


21.6.2017

Rosatom: climate’s new best friend
By VLADIMIR SLIVYAK

As Russia’s economic crisis continues to hit budgets, the country’s state nuclear corporation is going green to raise funds on the international level.

Alexei Likhachev, head of Rosatom, at the St Petersburg Economic Forum 2017. Source: ForumSPB. The recent St Petersburg International Economic Forum was widely covered by the Russian media, partly because of the eye-catching debates in which president Vladimir Putin himself took part. In the general flood of news from the forum, the presentation given by Alexei Likhachev, the recently appointed head of Russia’s state nuclear corporation, has made few waves.

Show more...

But Likhachev’s speech is significant in that it reflects a principally new approach to promoting Russian nuclear power plants on the international scene. Russia’s nukes will now be advertised as essential to mitigating climate change.

Rosatom is one of the most important instruments for promoting Russia’s geopolitical interests in other countries. The issue with nuclear power is that when a client country buys a plant, it becomes dependent on fuel supplies, servicing agreements and specialists from the providing country. In almost every case, Russia stimulates interest in these technologies by providing major loans towards plant construction costs. And the list of states where Rosatom is planning to build reactors (among them Belarus, Hungary and Iran) is generally friendly to the Russian regime.

Friends in need

This is the first time that Rosatom has made climate change central to its advertising strategy — unlike its western counterparts, who got hooked on the idea of nuclear power as “climate’s best friend” almost two decades ago. There was a serious message (albeit chiefly an economic one) behind those slogans: at that point, the nuclear energy industry in the west had been in a state of stagnation for many years. Power station construction had ground to a halt almost everywhere, partly due to high costs and partly due to the unresolved issue of nuclear waste.

Increasing concerns about climate change gave the nuclear industry a lifebelt: nuclear reactors, after all, emit hardly any greenhouse gases. However, it was very quickly discovered that this is only half the truth. Berlin’s Öko-Institute calculated that if you look at the complete fuel cycle (from extracting uranium to storing and reprocessing radioactive waste), the emission levels of nuclear power plants were close to those of modern gas technology. The main reason for this is the enormously energy intensive process used to enrich uranium. Attempts to solve the economic problems of the nuclear industry at the expense of climate change have stimulated new research, which has led to an interesting conclusion — the use of nuclear power is an incredibly inefficient way of lowering greenhouse gas emissions at a global level.

Russia’s public purse has been seriously hit by its economic crisis, and perhaps this is the reason behind Rosatom’s present reincarnation as a “climate-friendly” body

The main limitation of nuclear power is the fact that it is used almost exclusively to generate electricity, which accounts for less than 25% of global human-made greenhouse gases. Doubling the production of nuclear energy would reduce the emission of these gases by a mere six percent, and then only if they were replacing coal fired power stations. And there would be no benefit at all if it replaced a combination of renewable energy and energy conservation. In that situation, to produce the same six percent reduction in greenhouse gas emissions would require around 500 new reactors on top of the existing ones, as well as more new reactors to replace those being decommissioned: according to the International Atomic Energy Agency nearly 200 existing reactors will be out of service by 2040.

A large modern nuclear reactor costs between five and 15 billion dollars to build, depending on type and manufacturer. This is obviously an enormous amount of money, which doesn’t solve the problem at hand. The Intergovernmental Panel on Climate change (IPCC) believes that in order to avert the most catastrophic consequences of climate change, emissions need to be cut by at least a half by mid-century. So the question is not about new reactors at some stage in the future, but about a strict time limit on their construction. Nuclear power plants take longer to build than any other power stations (about seven to ten years on average) and some reactors, such as the Russian BN-800, the most powerful fast-breeder reactor in the world, have taken around 30 years to come online.

The western nuclear industry’s most serious attempt to raise international finance on the back of the climate change issue was made at the UN-sponsored Hague Climate Change Conference in 2000. It was not a success. Since then, nuclear experts have concentrated their efforts on lobbying national governments — also, as we can see, without success: not a single country has decided to adopt nuclear power as the central element of their anti-climate change policy.

Novovoronezh Reactor No 3, Russia. CCA 3.0 Flávia Villela/Agência Brasi. Some rights reserved.In 2017, Rosatom decided to seize the nuclear-climate flag from the weakening hands of their western colleagues. It was evidently not just a question of Russian nuclear specialists rushing to deal with the challenges of the day, nor was it an attempt to start a trend. They made a fundamental change in their international self-promotion strategy simply because their old approach to selling reactors wasn’t working. Rosatom never tires of pointing out that its portfolio contains dozens of contracts for new power stations all over the world and is worth a total of 100 billion dollars.

But for some reason, reactors are actually only being built in three or four countries, and numerous agreements signed years ago remain only on paper. In the last six months alone, Vietnam pulled out of a contract and a court in South Africa ruled that a contract with Russia for the development of nuclear power infringed its constitution. And in Russia itself, many more reactors have been planned than built. The irresistible spread of Russian nuclear power plants throughout the world seems to have been put on hold, and something needs to change. So why not change your image? Anyone who refuses to purchase a Rosatom facility will become an enemy of the climate like Donald Trump.

The state corporation doesn’t need to apply for finance itself — the developing countries buying from it, short of cash and technology to mitigate the consequences of climate change, will do that

Despite its climate change “coming out”, Rosatom is unlikely to be able to sell any more reactors. It will take some time even to fulfil those contracts that are already signed and sealed. And it’s highly unlikely that all the orders in its portfolio will ever be completed. If there is anything behind Rosatom’s new advertising campaign, it is the hope that Russia will be able to access international finance for the fight against climate change. The UN and 2016 Paris Agreement are putting together special funds for precisely this purpose.

In other words, Rosatom will try to do what its western counterparts did back in 2000. The state corporation doesn’t need to apply for finance itself — the developing countries buying from it, short of cash and technology to mitigate the consequences of climate change, will do that. And perhaps Rosatom won’t even need to finance the construction of nuclear power plants by borrowing from the Russian state budget, as it mostly did until now — although it will have to invest some money.

Russia’s public purse has been seriously hit by its economic crisis, and perhaps this is the reason behind Rosatom’s present reincarnation as a “climate-friendly” body. And the fact that nuclear energy is too expensive and inefficient for its stated goals is neither here nor there, it’s just a question of survival.

Show less


ORF 1 Mittagsjournal  7.3.2017 Die Paks-Förderung ist laut EU-Kommission legal:

„Das Atomkraftwerk Paks in Ungarn darf ausgebaut werden. Das hat die EU-Kommission gestern nach einer längeren Prüfung so entschieden. Die ungarische Regierung will mit Hilfe eines Milliardenkredits aus Russland dort zwei neue Atomreaktoren bauen lassen. Aus Sicht der EU-Kommission ist das mit den EU-Regeln vereinbar.
Doch aus Österreich kommt Widerstand: Umweltschutzorganisationen wie Global 2000 kritisieren das Projekt scharf, und die Bundesregierung hat eine Klage vor dem Europäischen Gerichtshof angekündigt.“http://oe1.orf.at/player/20170307/464330


„Über die imaginäre nukleare Renaissance“(engl.) von Dr. George Kaschiev, 29.11.2016

Auf unserer Bulgarienseite:

Dr. George Kaschiev ist Kernphysiker. Er arbeitet als wissenschaftlicher Berater am Institut für Risikoforschung der Universität Wien. Er war Betreuer der Orte auf der Fifth von NPP „Kosloduj“ im Zeitraum 1972-1989 hat an der Technischen Universität gelehrt und war Teil der amerikanischen Firma „Westinghouse“. Kaschiev ist Professor für Kernreaktoren am Tokyo Institute of Technology. Er war Vorsitzender des Ausschusses für die Nutzung der Atomenergie für friedliche Zwecke, die später in eine Nuclear Regulatory Agency umgewandelt wurde.


Neue  Kurznachrichten  von   Raimund Kamm                    21.11.2016

Frankreich

12 – 20 Atomreaktoren müssen jetzt abgeschaltet und dann überprüft werden, weil man festgestellt hat, dass dort falscher Stahl verbaut worden ist.

Von wegen Versorgungssicherheit durch Atomstrom.

 Schweiz

In der Schweiz würden die Betreiber wegen der laufenden Verluste gerne die AKW loswerden. Sie haben die AKW als Geschenk den Franzosen und anderen angeboten. Aber nicht einmal geschenkt will sie jemand haben.

 Belgien und benachbartes Westdeutschland

Dort wachsen die Sorgen, weil in den 7 Atomreaktoren an den zwei belgischen Standorten Doel und Tihange immer mehr Risse sogar im Reaktordruckbehälter gefunden werden.

http://www.ingenieur.de/Fachbereiche/Kernenergie/Bei-Atomunfall-in-Tihange-wuerde-Aachen-unbewohnbar

 Gundremmingen

Heute wurde ohne Erklärung Block B stundenweise von sonst rund 1300 MW auf 140 MW gedrosselt. Jetzt läuft er mit knapp 500 MW. Hier die Zahlen.

 Hackerangriffe auf weltweit zwei AKW-Konzerne schüren Sorgen bei der Atombehörde IAEO

Das AKW Gundremmingen von RWE ist eines der zwei weltweit betroffenen.

12.10.16  http://www.ingenieur.de/Fachbereiche/Kernenergie/Atombehoerde-bestaetigt-Es-gab-Hackerangriff-Kernkraftwerk

 


Weltweit boomen die Erneuerbaren

 Photovoltaik deckte 2015 rund fünf Prozent des weltweiten Strombedarfs

Weiterlesen...

 13.10.2016: Zwischen 2006 und 2015 hat sich die weltweit installierte Leistung von Erneuerbare-Energien-Anlagen von 1.037 Gigawatt (GW) auf 1.985 GW fast verdoppelt. Die Leistung von Windenergie stieg dabei von 74 auf 432 GW, Solarenergie legte im gleichen Zeitraum von sechs auf 227 GW zu. Wasserkraft stieg vom 893 auf 1.209 GW. Dies geht aus dem neuen Report »World Energy Resources 2016« hervor, der anlässlich des derzeit in Istanbul stattfindenden 23. Weltenergiekongresses vorgestellt wurde. Demnach steht Wasserkraft mit 71 Prozent an erster Stelle des mit erneuerbarer Energien erzeugten Stroms, gefolgt von Wind (15 Prozent) und Sonne (5 Prozent). 
Die insgesamt produzierte Strommenge durch erneuerbare Quellen lag 2015 den Angaben zufolge bei 5.559 Terawattstunden, was einem Anteil von 23 Prozent an der Weltstromproduktion entspricht (24.098 Terawattstunden). Betrachtet man die 2015 insgesamt neu installierte Erzeugungsleistung, so haben Wasser, Wind und Sonne daran einen Anteil von 30 Prozent – mit wachsender Tendenz.

Den mehr als 1.000 Seiten umfassenden Report »World Energy Resources 2016« gibt es als PDF kostenfrei auf der Website des World Energy Councils (www.worldenergy.org, Pfad »publications«). Er beinhaltet auch Zahlen zu herkömmlichen Energiequellen sowie Kernkraft. 
© PHOTON   www.worldenergy.org 


10.10.2016

Cyberangriffe

Atomenergiebehörde (IAEA) warnt vor Hackerattacken auf Atomkraftwerke 

auf unserer Deutschlandseite     http://www.donauregion-atomkraftfrei.at/beitraege-deutschland/


28.09.2016

Actions against the life-time extension of reactors 5 & 6 of Kozloduy NPP

By Adi-Maria Luminita Simoiu

(nur englisch)      


Neue Beiträge über Aktivitäten zu Belene       Diskussionen mit Bulgarischen und Rumänischen Teilnehmern auf unserer Bulgarienseite (englisch)


29.9.2016, Hinkley Point: Vertrag für AKW-Bau unterzeichnet (ORF)


Points for the case in SAC against the second EIA for the National Repository for Radioactive Waste (NRRW) in Bulgaria

20.Juni 2016


plage.cc   Plattform gegen Atomgefahren Salzburg  Tweet am 25.4.2016 von Mark Johnston, Energy Consultant, Brüssel

ARD-Kommentar für Austritt Deutschlands aus EURATOM

 WDR-Korrespondent Jürgen DÖSCHNER stellt im Tagesschau-Kommentar vom 26.4.2016 fest, dass angesichts der Laufzeitverlängerungen und der zunehmenden Risiken des europäischen AKW-Parks größte Sorge angebracht, jedoch gerade von Brüssel kaum etwas zu erwarten sei:

Die EU regelt die Sicherheit der Kernkraftwerke nicht.“ *

„Die Konsequenz? In einer EU, die zwar den Durchmesser von Pizzen, nicht aber die Sicherheitsstandards von Atomkraftwerken regelt, kann die Antwort – vorerst – nur eine nationale sein. Aber auch die kann über die Grenzen hinweg wirken. Zum Beispiel, wenn Deutschland aus dem EURATOM-Vertrag aussteigen und die Herstellung sowie den Export von Brennelementen verbieten würde. Ein möglicher, angemessener und keineswegs überstürzter Schritt – 30 Jahre nach Tschernobyl.“

HIER finden Sie den Originalbeitrag von DÖSCHNER. Die Audiodatei steht dort zum Download zur Verfügung.

* Vgl. dazu die ausführliche Erörterung der Frage:
Garantiert der EURATOM-Vertrag die nukleare Sicherheit? 
In: Patricia LORENZ (2014). Noch mehr Geld für noch mehr Risiko? Der EURATOM-Vertrag zur europaweiten Förderung der Atomenergie. Mit einem Vorwort von Sabine WILS. Hrsg.: Konföderale Fraktion der Vereinten Europäischen Linken/Nordischen Grünen Linken (GUE/
NGL). Die Studie können Sie HIER herunterladen, ebenso eine Internetkonferenz dazu.


Ältestes Atomkraftwerk der Welt soll wieder ans Netz

Sonnenseite 06.05.2016

AKW_beznau

Nachdem Risse in der Reaktorhülle des AKW Beznau im Schweizer Kanton Aargau entdeckt worden waren, was zu einem Abschalten des Meilers geführt hatte, verkündete die Betreibergesellschaft nun, dass man Ende des Jahres den Betrieb wieder aufnehmen wolle.
weiterlesen:   sonnenseite
Quelle   energiezukunft.eu | na 2016

ORF Kärnten, 8.4.2016

AKW Krsko: Neue Erdbebenlinien aufgedeckt

Eine internationale Expertengruppe hat am Donnerstag in Klagenfurt über die Risiken des slowenischen Atomkraftwerks Krsko diskutiert. Es stellte sich heraus, dass es neue Erdbebenlinien gibt, über die Österreich bisher nicht informiert wurde. Zudem soll ein zweites AKW entstehen.

Um zu einer neuen Risikoeinschätzung für das AKW zu gelangen, tauschten Experten aus Frankreich, Italien, Slowenien, Österreich, Kroatien und den USA bei der Fachtagung ihr Wissen aus. Zwar wurden die Medien vor Beginn der Tagung hinausgebeten, in der Expertendiskussion trat dann aber zutage, dass der AKW-Betreiber Experten aus den USA mit Untersuchungen für den Standort beauftragt hat. Dabei wurden einige bisher unbekannte seismische Störungen entdeckt, die Erdbeben produzieren könnten, hieß es von Tagungsteilnehmer Kurt Decker von der Universität Wien. Diese Störungslinien liegen in einem Umkreis von nur etwa 25 Kilometern rund um das AKW.

 weiterlesen: auf unserer Slowenienseite   http://www.donauregion-atomkraftfrei.at/beitraege-slowenien/ 


Notizen vom NUCLEAR PHASEOUT CONGRESS

Mo. 21.3.16 in Zürich – Veranstalter Schweizerische Energie-Stiftung

„Am 21. März 2016 nahmen 223 Personen am NPC 2016 – Nuclear Phaseout Congress der SES teil. Der Kongress thematisierte die weltweite Entwicklung der Atomenergie, die Risiken alternder Reaktoren und die Herausforderungen für Atomaufsichtsbehörden, Politik und Gesellschaft.“

weiterlesen:

http://www.donauregion-atomkraftfrei.at/beitraege-deutschland/


Die Europäische Kommission sucht Klärung bezüglich staatlicher Unterstützung für Paks II
http://www.world-nuclear-news.org/sectionhub.aspx?fid=798

13 January 2016

Die Europäische Kommission ließ gestern verlauten, dass Ungarn bislang nicht erklärt hat, wieweit die Erweiterungspläne des AKW Paks mit den staatlichen Beihilferegeln in Einklang stehen. Ungarn antwortete darauf, dass die diesbezüglichen Erhebungen der EK „eine Anzahl von Ungenauigkeiten und Missverständnissen“ enthalten wie auch „unfundierte und irreführende Behauptungen“.

New Nuclear – World Nuclear News

WORLD-NUCLEAR-NEWS.ORG

Oekonews, 20.11.2015

AKW PAKS II: Die Europäische Kommission prüft den Verdacht auf illegale Beihilfen und Verstoß gegen das EU-Vergaberecht. Erst gestern wurde der erste Schritt eines Vertragsverletzungsverfahrens gegen Ungarn von der Europäischen Kommission eingeleitet. „Es ist erfreulich, dass die EU-Kommission vor dem Orban-Putin-Projekt Paks II nicht in die Knie geht“, so Adam Pawloff, Anti-Atom-Sprecher von Greenpeace in Österreich.


 Gundremmingen: Gefährlichste Atomanlage Deutschlands      

Süddeutsche Zeitung 11. Dez. 2015  Bayern

http://www.donauregion-atomkraftfrei.at/beitraege-deutschland/


Süddeutsche Zeitung 7. Dez. 2015 21:32 Von Wolfgang Wittl http://www.sueddeutsche.de

Bayern macht Weg für Castoren frei

Nach langem Streit lenkt CSU-Chef Horst Seehofer nun doch ein – sehr zum Ärger der betroffenen Landkreise.

Als letztes Bundesland hat auch Bayern der Übernahme von Castoren zugestimmt, die eigentlich für das Zwischenlager Gorleben bestimmt waren. Demnach sollen am Kernkraftwerk Isar sieben von insgesamt 26 Castoren unterkommen, die in den nächsten Jahren aus Wiederaufarbeitungsanlagen in Frankreich und Großbritannien nach Deutschland zurückkommen sollen. Es handle sich um eine „gesamtstaatliche Aufgabe, bei der auch Bayern bereit ist, Mitverantwortung zu übernehmen“, heißt es in einer Vereinbarung von Bayerns Ministerpräsident Horst Seehofer (CSU) und Umweltministerin Barbara Hendricks (SPD). Sie liegt der Süddeutschen Zeitung vor.

Für den gekürzten Artikel klicken Sie bitte auf das Fähnchen german_flag_xs


 Rumänien beteiligt sich an der Klage Österreichs gegen UK bezüglich Nuklearenergie                7.12.2015

http://www.romania-insider.com/romania-steps-in-austria-vs-uk-lawsuit-on-nuclear-energy/161004/


Finanzen.net 2.12.2015

Klageverfahren um Hinkley Point C: Ungarn und die Slowakei wollen vor Gericht für britische Atom-Subventionen streiten

Hamburg (ots) – Der Ökostromanbieter Greenpeace Energy sieht sich darin bestätigt, dass auch andere EU-Staaten Atomsubventionen nach dem Vorbild des umstrittenen AKW-Projektes Hinkley Point C nutzen wollen. Dies lässt sich aus der neuen Nachricht schließen, dass neben Großbritannien auch die Slowakei und Ungarn die EU-Kommission im Klageverfahren um milliardenschwere britische Atombeihilfen unterstützen wollen. Alle drei Staaten haben in den vergangenen Tagen Anträge gestellt, als Streithelfer in das Verfahren aufgenommen zu werden, wie das zuständige Gericht der Europäischen Union mitteilte.

http://www.finanzen.net/nachricht/aktien/Klageverfahren-um-Hinkley-Point-C-Ungarn-und-die-Slowakei-wollen-vor-Gericht-fuer-britische-Atom-Subventionen-streiten-4637361


oekonews.at 2.12. 2015

AKW Hinkley Point wird immer offensichtlicher zur Grundsatzentscheidung über die Zukunft der Atomenergie in Europa

Jetzt steigt auch Tschechien in die Auseinandersetzung ein- Österreich, Luxemburg und hunderttausende Bürger/innen kämpfen dagegen

http://www.oekonews.at/index.php?mdoc_id=1103192


Oliver Tickell
 Editor The Ecologist 21.November 2015

Luxemburg unterstützt Hinkley C Klage

flagge-oesterreich-flagge-rechteckigschwarz-18x31

mehr darüber auf unserer Österreichseite


Strafanzeige: Skandal um Sicherheit in tschechischen AKWs!     Oekonews 27.11.2015 Artikel Online geschalten von: / holler /

Strafanzeige wegen fehlender Überprüfung der Schweißnähte im AKW Dukovany -Forderung nach Sicherheitsuntersuchung durch internationale Expertenkommission für die AKW Temelin und Dukovany

Weiterlesen...

Weniger zeigen

Der Skandal um die Sicherheit im tschechischen AKW Dukovany soll nun zu einer Strafanzeige durch die Betreiber-Gesellschaft CEZ gegen die zur Kontrolle der Schweißnähte beauftragten Firma Tediko führen, heißt es in einer Meldung der Agentur CTK nach Infos von CEZ-Sprecher und Staatsanwalt. Ausschlaggebend dafür war eine Sicherheitslücke, die seit dem Stillstand von drei Reaktoren in Dukovany in den letzten Wochen ans Tageslicht gekommen ist: Dana Drábová, Chefin der tschechischen Atomaufsichtsbehörde, gab Anfang November bekannt, dass eine der defekten Schweißnähte bei einem der Reaktoren lt. Aufzeichnungen erst vor einem halben Jahr repariert worden sei und daher intakt sein müsste. Auch interne Aufzeichnungen zeigten ein intaktes Röntgen-Bild, Drábová stellte die Möglichkeit eines gefälschten Röntgenbildes in den Raum. Anschober: „Wenn sogar der Betreiber CEZ selbst und die Chefin der tschechischen Atomaufsichtsbehörde aktiv werden, heißt das, dass im AKW Dukovany unhaltbare Zustände bei den Sicherheitskontrollen vorherrschen. Seit Monaten appelliere ich an Bundesminister Rupprechter, eine internationale Expertenkommission zum Gesamtcheck der tschechischen Atomkraftwerke einzusetzen. Auch bei bilateralen Gesprächen zwischen Österreich und Tschechien muss das Thema Sicherheit in AKWs weitaus kritischer hinterfragt und vorgelegte Dokumente umfassend geprüft werden. Es wird höchste Zeit zum Handeln!“ Brisant in diesem Zusammenhang: Für den bereits 30 Jahre alten ersten Block in Dukovany ist eine Laufzeitverlängerung für mindestens weitere 10 Jahre geplant. Die Genehmigung ist von der tschechischen Aufsichtsbehörde zu erteilen. „Es darf zu keiner automatischen Laufzeitverlängerung kommen. Darum fordere ich erneut eine grenzüberschreitende Umweltverträglichkeitsprüfung, um die massiven Sicherheitsdefizite umfassend zu klären“, so Landesrat Anschoben. Siehe auch: 

http://www.meinbezirk.at/linz/politik/kontrollskandal-bei-tschechischen-atomkraftwerken-dukovany-und-temelin-d1583415.html

Weniger zeigen


 

Oekonews, 20.11.2015

AKW PAKS II: Die Europäische Kommission prüft den Verdacht auf illegale Beihilfen und Verstoß gegen das EU-Vergaberecht. Erst gestern wurde der erste Schritt eines Vertragsverletzungsverfahrens gegen Ungarn von der Europäischen Kommission eingeleitet. „Es ist erfreulich, dass die EU-Kommission vor dem Orban-Putin-Projekt Paks II nicht in die Knie geht“, so Adam Pawloff, Anti-Atom-Sprecher von Greenpeace in Österreich.


Oekonews, 18.11.2015

AKW-Bohunice Anhörung – Österreichs Regierung muss für Rechte der Bevölkerung einstehen

Am 18.11. fand in Wien die Anhörung zur Erweiterung des slowakischen AKW Bohunice statt. Der Projektwerber JESS plant, am 85 Kilometer von Wien entfernten Standort Jaslovská Bohunice einen weiteren Reaktor zu errichten (zu den bestehenden zwei Alt-Reaktoren, einem stillgelegten und einem schwer verunfallten Atomkraftwerk, in dem es 1977 zu einer Kernschmelze kam, sowie zu einem Atommüll-Zwischenlager). 

flagge-oesterreich-flagge-rechteckigschwarz-18x31    mehr drüber auf unserer Österreichseite


Besorgniserregender Vorfall im AKW Gundremmingen

Gesendet: Mittwoch, 11. November 2015  von  Raimund Kamm [mailto:r.kamm@anti-akw.de]

german_flag_xs   mehr darüber auf unserer Deutschlandseite

Raimund Kamm         Nov. 11th 2015


  10.000 Einsprüche gegen den Ausbau des AKW Bohunice

Ein Rekord: fast 10.000 Stellungnahmen wurden von UnterstützerInnen im Rahmen des gesetzlichen grenzüberschreitenden Umweltverträglichkeitsprüfungs-Verfahren (UVP) über die GLOBAL 2000 Eingabemaske an die ESPOO-Kontaktstelle geschickt. https://www.global2000.at/10000-einsprüche-gegen-den-ausbau-des-akw-bohunice


 Newsletter des Umweltinstituts München 6.11. 2015

Über 130.000 Menschen fordern: Atomkonzerne müssen haften

http://www.umweltinstitut.org/aktuelle-meldungen/meldungen/130000-unterschriften-an-atom-kommission-uebergeben.html


Paul Dorfman: The Legal Case Against  Hinkley (leider nur englisch)

http://mollymep.org.uk/wp-content/uploads/Presentation_PDorfman.pdf


Explosion im belgischen Atomreaktor Doel 1

Was die Explosion im Reaktorblock 1 ausgelöst hat, ist noch unklar. DOEL.In Reaktor 1 des belgischen Atomkraftwerks Doel hat es am Samstagabend nach einer Explosion gebrannt. Bei dem Vorfall im AKW Doel bei Antwerpen habe es sich nicht um einen nuklearen Vorfall gehandelt, teilte die Sprecherin des Betreibers Electrabel mit.
Letzte Aktualisierung: 

https://www.aachener-zeitung.de/lokales/region/explosion-im-belgischen-atomreaktor-doel-1-1.1214397


Österreichs Klage gegen Hinkley Point veröffentlicht (14.10.2015)

Links:
Hinkley Point Klage der Republik Österreich
Hintergrundpapier Hinkley Point:
www.global2000.at/sites/global/files/GLOBAL2000_Hinkley_Point_Hintergrundpapier.pdf

Hinkley Point-Beschwerde GLOBAL 2000 und ÖKOBÜRO auf der Homepage der
Vereinten Nationen

Mehr darüber deutsch und englisch auf unserer Österreichseite:  flagge-oesterreich-flagge-rechteckigschwarz-18x31


Erneut Skandal um EU Kommission – gesetzeswidrige Atomkredite an Ukraine

Presseaussendung (gekürzt) vom 2.10.2015 des Anti-Atomkomitees im Namen des Österreichischen Netzwerks Atomkraftfrei (ÖNA)

Mehr darüber deutsch und englisch auf unserer Österreichseite:  flagge-oesterreich-flagge-rechteckigschwarz-18x31

http://www.donauregion-atomkraftfrei.at/beitraege-oesterreich/

 https://www.akweb.de/ak_s/ak428/23.htm

https://www.global2000.at/presse/global-2000-kein-eu-steuergeld-für-ukrainische-akws